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PREFACE

This book is intended to accompany a text used in that first course in fluid 
mechanics that is required in all mechanical engineering and civil engineering 
departments, as well as several other departments. It provides a succinct 
presentation of the material so that students more easily understand the difficult 
parts. Many fluid mechanics texts are very long and it is often difficult to 
ferret out the essentials due to the excessive verbiage. This book presents those 
essentials.

We have included a derivation of the Navier-Stokes equations with several solved 
flows. It is not necessary, however, to include them if the elemental approach is 
selected. Either method can be used to study laminar flow in pipes, channels, 
between rotating cylinders, and in laminar boundary layer flow. 

The basic principles upon which a study of fluid mechanics is based are illustrated 
with numerous examples and practice exams that allow students to develop their 
problem-solving skills. The solutions to all problems in the practice exams are 
included at the end of the book. Examples and problems are presented using SI 
metric units. 

The practice exams at the end of each chapter contain four-part, multiple-choice 
problems similar to those found on national exams, such as the Fundamentals of 
Engineering exam (the first of two exams required in the engineering registration 
process) or the Graduate Record Exam (required when applying for most graduate 
schools). There are also partial-credit practice exams at the end of each chapter. 
Engineering courses do not, in general, utilize multiple-choice exams but it is quite 
important that students gain experience in taking such exams. This book allows that 
experience, if desired. If one correctly answers 50% or more multiple-choice questions 
correctly, that is quite good.

The mathematics required is that of other engineering courses except that if the 
study of the Navier-Stokes equations is selected then partial differential equations 
are encountered. Some vector relations are used but not at a level beyond most 
engineering curricula. 



If you have comments, suggestions, or corrections or simply want to opine, please 
email me at MerleCP@sbcglobal.net. It is impossible to write a book free of errors 
but if we’re made aware of them, we can have them corrected in future printings. 
So, please send me an email when you discover one.

Merle C. Potter  P.E., Ph.D.

xii Preface
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The Essentials

Fluid mechanics is encountered in almost every area of our physical lives. Blood 
fl ows through our veins and arteries, a ship moves through water, airplanes fl y in 
the air, air fl ows around wind machines, air is compressed in a compressor, steam 
fl ows around turbine blades, a dam holds back water, air is heated and cooled in our 
homes, and computers require air to cool components. All engineering disciplines 
require some expertise in the area of fl uid mechanics. 

In this book we will solve problems involving relatively simple geometries, 
such as fl ow through a pipe or a channel, and fl ow around spheres and cylinders. 
But fi rst, we will begin by making calculations in fl uids at rest, the subject of fl uid 
statics. 

The math required to solve the problems included in this book is primarily 
calculus, but some differential equations will be solved. The more complicated 
fl ows that usually are the result of more complicated geometries will not be 
presented.

In this fi rst chapter, the basic information needed in our study will be presented.

CHAPTER 1
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2 Fluid Mechanics Demystifi ed

1.1 Dimensions, Units, and Physical 
Quantities

Fluid mechanics is involved with physical quantities that have dimensions and 
units. The nine basic dimensions are mass, length, time, temperature, amount of a 
substance, electric current, luminous intensity, plane angle, and solid angle. All 
other quantities can be expressed in terms of these basic dimensions; for example, 
force can be expressed using Newton’s second law as

 F ma=  (1.1)

In terms of dimensions we can write (note that F is used both as a variable and as a 
dimension)

 F M
L

T
=

2
 (1.2)

where F, M, L, and T are the dimensions of force, mass, length, and time. We see that 
force can be written in terms of mass, length, and time. We could, of course, write

 M F
T

L
=

2

     (1.3)

Units are introduced into the above relationships if we observe that it takes 1 newton 
to accelerate 1 kilogram at 1 meter per second squared, i.e.,

 N = kg m/s⋅ 2  (1.4)

This relationship will be used often in our study of fl uids. In the SI system, mass 
will always be expressed in kilograms, and force in newtons. Since weight is a 
force, it is measured in newtons, never kilograms. The relationship

 W mg=  (1.5)

is used to calculate the weight in newtons given the mass in kilograms, and g =
9.81 m/s2. Gravity is essentially constant on the earth’s surface varying from 9.77 m/s2 
on the highest mountain to 9.83 m/s2 in the deepest ocean trench.

Five of the nine basic dimensions and their units are included in Table 1.1; derived 
units of interest in our study of fl uid mechanics are included in Table 1.2. Prefi xes 
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Table 1.1 Basic Dimensions and Their Units

Quantity Dimension SI Units English Units

Length l         L meter m foot ft

Mass m        M kilogram kg slug slug

Time t        T second s second sec

Temperature T              Q kelvin K Rankine R

Plane angle radian rad radian rad

Table 1.2 Derived Dimensions and Their Units

Quantity Dimension SI Units English Units

Area A L2 m2 ft2

Volume*
 V L3 m3 or L (liter) ft3

Velocity V L/T m/s ft/sec

Acceleration a L/T2 m/s2 ft/sec2

Angular velocity Ω T−1 s−1 sec−1

Force F ML/T2 kg · m/s2   or  N slug · ft/sec2  or  lb

Density r M/L3 kg/m3 slug/ft3

Specifi c weight g M/L2T2 N/m3 lb/ft3

Frequency f T−1 s−1 sec−1

Pressure p M/LT2 N/m2   or   Pa lb/ft2

Stress t M/LT2 N/m2   or   Pa lb/ft2

Surface tension s M/T2 N/m lb/ft

Work W ML2/T2 N · m   or   J ft · lb

Energy E ML2/T2 N · m   or   J ft · lb

Heat rate �Q ML2/T3 J/s Btu/sec

Torque T ML2/T2 N · m ft · lb  

Power �W ML2/T3 J/s   or   W ft · lb/sec

Mass fl ux �m M/T kg/s slug/sec

Flow rate Q L3/T m3/s ft3/sec

Specifi c heat c L2/T2Q J/kg · K Btu/slug · °R

Viscosity μ M/LT N · s/m2 lb · sec/ft2

Kinematic viscosity v L2/T m2/s ft2/sec

*We use the special symbol V  to denote volume and V to denote velocity.



4 Fluid Mechanics Demystifi ed

are common in the SI system, so they are presented in Table 1.3. Note that the SI 
system is a special metric system. In our study we will use the units presented in 
these tables. We often use scientifi c notation, such as 3 105×  N rather than 300 kN; 
either form is acceptable. 

We fi nish this section with comments on signifi cant fi gures. In almost every cal-
culation, a material property is involved. Material properties are seldom known to 
four signifi cant fi gures and often only to three. So, it is not appropriate to express 
answers to fi ve or six signifi cant fi gures. Our calculations are only as accurate as the 
least accurate number in our equations. For example, we use gravity as 9.81 m/s2, 
only three signifi cant fi gures. It is usually acceptable to express answers using four 
signifi cant fi gures, but not fi ve or six. The use of calculators may even provide 
eight. The engineer does not, in general, work with fi ve or six signifi cant fi gures. 
Note that if the leading digit in an answer is 1, it does not count as a signifi cant 
fi gure, e.g., 12.48 has three signifi cant fi gures.

EXAMPLE 1.1
Calculate the force needed to provide an initial upward acceleration of 40 m/s2 
to a 0.4-kg rocket.

Solution
Forces are summed in the vertical y-direction:

Table 1.3 Prefi xes for SI Units

Multiplication Factor Prefi x Symbol

                1012 tera      T

                109 giga      G

                106 mega      M

                103 kilo      k

                10−2 centi*      c

                10−3 mili      m

               10−6 micro      μ

                10−9 nano      n

                10−12 pico      p

*Discouraged except in cm, cm2, or cm3.
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∑ =

− =

F ma

F mg ma
y y

F F− × = × ∴ =0 4 9 81 0 4 40 19 92. . . . N

Note that a calculator would provide 19.924 N, which contains four signifi cant 
fi gures (the leading 1 doesn’t count). Since gravity contained three signifi cant 
fi gures, the 4 was dropped.

1.2 Gases and Liquids
The substance of interest in our study of fl uid mechanics is a gas or a liquid. We 
restrict ourselves to those liquids that move under the action of a shear stress, no 
matter how small that shearing stress may be. All gases move under the action of a 
shearing stress but there are certain substances, like ketchup, that do not move until 
the shear becomes suffi ciently large; such substances are included in the subject of 
rheology and are not presented in this book.

A force acting on an area is displayed in Fig. 1.1. A stress vector t is the force vec-
tor divided by the area upon which it acts. The normal stress acts normal to the area 
and the shear stress acts tangent to the area. It is this shear stress that results in fl uid 
motions. Our experience of a small force parallel to the water on a rather large boat 
confi rms that any small shear causes motion. This shear stress is calculated with

 τ =
→

lim
Δ

Δ
ΔA

tF

A0  (1.6)

n

t

ΔA

ΔF ΔFn

ΔFt

ΔA

Figure 1.1 Normal and tangential components of a force.



6 Fluid Mechanics Demystifi ed

Each fl uid considered in our study is continuously distributed throughout a 
region of interest, that is, each fl uid is a continuum. A liquid is obviously a contin-
uum but each gas we consider is also assumed to be a continuum; the molecules are 
suffi ciently close to one another so as to constitute a continuum. To determine if the 
molecules are suffi ciently close, we use the mean free path, the average distance a 
molecule travels before it collides with a neighboring molecule. If the mean free 
path is small compared to a characteristic dimension of a device, the continuum 
assumption is reasonable. At high elevations, the continuum assumption is not rea-
sonable and the theory of rarifi ed gas dynamics is needed. 

If a fl uid is a continuum, the density can be defi ned as

 ρ =
→

lim
Δ

Δ
ΔV

m

V0
 (1.7)

where Δ m is the infi nitesimal mass contained in the infi nitesimal volume Δ V . Actu-
ally, the infi nitesimal volume cannot be allowed to shrink to zero since near zero there 
would be few molecules in the small volume; a small volume e would be needed as 
the limit in Eq. (1.7) for the defi nition to be acceptable. This is not a problem for most 
engineering applications, since there are 2.7×1016  molecules in a cubic millimeter of 
air at standard conditions. With the continuum assumption, quantities of interest are 
assumed to be defi ned at all points in a specifi ed region. For example, the density is a 
continuous function of x, y, z, and t, i.e., ρ ρ= ( , , , ).x y z t

1.3 Pressure and Temperature
In our study of fl uid mechanics, we often encounter pressure. It results from com-
pressive forces acting on an area. In Fig. 1.2, the infi nitesimal force Δ F

n
 acting on 

the infi nitesimal area Δ A gives rise to the pressure, defi ned by

p
F

AA

n=
→

lim
Δ

Δ
Δ0 (1.8)

The units on pressure result from force divided by area, that is, N/m2, the pascal, Pa. 
A pressure of 1 Pa is a very small pressure, so pressure is typically expressed as 
kilopascals, or kPa. Atmospheric pressure at sea level is 101.3 kPa, or most often 
simply 100 kPa (14.7 psi). It should be noted that pressure is sometimes expressed 
as millimeters of mercury, as is common with meteorologists, or meters of water. 
We can use p gh= ρ  to convert the units, where r is the density of the fl uid with 
height h.
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Pressure measured relative to atmospheric pressure is called gage pressure; it is 
what a gage measures if the gage reads zero before being used to measure the pres-
sure. Absolute pressure is zero in a volume that is void of molecules, an ideal vac-
uum. Absolute pressure is related to gage pressure by the equation

 
p p pabsolute gage atmosphere= +  (1.9)

where p
atmosphere

 is the atmospheric pressure at the location where the pressure mea-
surement is made. This atmospheric pressure varies considerably with elevation 
and is given in Table C.3. For example, at the top of Pikes Peak in Colorado, it is 
about 60 kPa. If neither the atmospheric pressure nor elevation are given, we will 
assume standard conditions and use p

atmosphere
 = 100 kPa. Figure 1.3 presents a 

graphic description of the relationship between absolute and gage pressure. Several 
common representations of the standard atmosphere (at 40° latitude at sea level) 
are included in that fi gure.

ΔFn

ΔA

Surface

Figure 1.2 The normal force that results in pressure.

Figure 1.3 Absolute and gage pressure.

A

B

Atmospheric
pressure

pgage = 0

Zero absolute
pressure

pabsolute = 0

(pA)absolute

(pA)gage

(pB)gage

(pB)absolute

Standard atmosphere

101.3 kPa
14.7 psi
30 in Hg
760 mm Hg
1.013 bar
34 ft water
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We often refer to a negative pressure, as at B in Fig. 1.3, as a vacuum; it is either a 
negative pressure or a vacuum. A pressure is always assumed to be a gage pressure 
unless otherwise stated. (In thermodynamics the pressure is assumed to be absolute.) 
A pressure of −30 kPa could be stated as 70 kPa absolute or a vacuum of 30 kPa, 
assuming atmospheric pressure to be 100 kPa (note that the difference between 101.3 
kPa and 100 kPa is only 1.3 kPa, a 1.3% error, within engineering acceptability). 

We do not defi ne temperature (it requires molecular theory for a defi nition) but 
simply state that we use two scales: the Celsius scale and the Fahrenheit scale. The 
absolute scale when using temperature in degrees Celsius is the kelvin (K) scale. 
We use the conversion:

 K C= ° + 273 15.  (1.10)

In engineering problems we use the number 273, which allows for acceptable accu-
racy. Note that we do not use the degree symbol when expressing the temperature 
in degrees kelvin nor do we capitalize the word “kelvin.” We read “100 K” as 100 
kelvins in the SI system.

EXAMPLE 1.2
A pressure is measured to be a vacuum of 23 kPa at a location in Wyoming where 
the elevation is 3000 m. What is the absolute pressure?

Solution
Use Table C.3 to fi nd the atmospheric pressure at 3000 m. We use a linear inter-
polation to fi nd p

atmosphere
 = 70.6 kPa. Then

p p pabs atm= + = − =70 6 23 47 6. . kPa

The vacuum of 23 kPa was expressed as −23 kPa in the equation.

1.4 Properties of Fluids
A number of fl uid properties must be used in our study of fl uid mechanics. Density, 
mass per unit volume, was introduced in Eq. (1.7). We often use weight per unit 
volume, the specifi c weight g, related to density by

 γ ρ= g  (1.11)
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where g is the local gravity. For water g is taken as 9810 N/m3 unless otherwise 
stated. Specifi c weight for gases is seldom used.

Specifi c gravity S is the ratio of the density of a substance to the density of water 
and is often specifi ed for a liquid. It may be used to determine either the density or 
the specifi c weight:

 ρ ρ γ γ= =S Swater water  (1.12)

For example, the specifi c gravity of mercury is 13.6, which means that it is 13.6 
times heavier than water. So, r

mercury
 = 13.6 × 1000 = 13 600 kg/m3, where the den-

sity of water is 1000 kg/m3, the common value used for water. 
Viscosity m can be considered to be the internal stickiness of a fl uid. It results in 

shear stresses in a fl ow and accounts for losses in a pipe or the drag on a rocket. It can 
be related in a one-dimensional fl ow to the velocity through a shear stress t by

 τ μ=
du

dr
 (1.13)

where we call du/dr a velocity gradient; r is measured normal to a surface and u is tan-
gential to the surface, as in Fig. 1.4. Consider the units on the quantities in Eq. (1.13): 
the stress (force divided by an area) has units of N/m2 so that the viscosity has the 
units N · s/m2.

To measure the viscosity, consider a long cylinder rotating inside a second cylin-
der, as shown in Fig. 1.4. In order to rotate the inner cylinder with the rotational 

Figure 1.4 Fluid being sheared between two long cylinders.

T

u

R

r

h Ω
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speed Ω, a torque T must be applied. The velocity of the inner cylinder is RΩ and 
the velocity of the outer fi xed cylinder is zero. The velocity distribution in the gap 
h between the cylinders is essentially a linear distribution as shown so that 

 τ μ μ= =
du

dr

R

h

Ω
 (1.14)

We can relate the shear to the applied torque as follows:

 

T = stress area moment arm× ×
= × ×

= ×

τ π

μ

2 RL R

R

h

Ω
22 2

3

π π μ
RL R

R L

h
× =

Ω  (1.15)

where the shear stresses acting on the ends of the long cylinder have been neglected. 
A device used to measure the viscosity is a viscometer. 

In an introductory course, attention is focused on Newtonian fl uids, those that exhibit 
a linear relationship between the shear stress and the velocity gradient, as in Eqs. (1.13) 
and (1.14) and displayed in Fig. 1.5 (the normal coordinate here is y). Many common 
fl uids, such as air, water, and oil are Newtonian fl uids. Non-Newtonian fl uids are classi-
fi ed as dilatants, pseudoplastics, and ideal plastics and are also displayed.

A very important effect of viscosity is to cause the fl uid to stick to a surface, the 
no-slip condition. If a surface is moving extremely fast, as a satellite entering the 
atmosphere, this no-slip condition results in very large shear stresses on the surface; 
this results in extreme heat which can incinerate an entering satellite. The no-slip 

du/dy

Newtonian
fluid

Ideal
plastic

Dilatant

Pseudoplastic

t

Figure 1.5 Newtonian and non-Newtonian fl uids.
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condition also gives rise to wall shear in pipes resulting in pressure drops that 
require pumps spaced appropriately over the length of a pipe line transporting a 
fl uid such as oil or gas.

Viscosity is very dependent on temperature. Note that in Fig. C.1, the viscosity 
of a liquid decreases with increased temperature, but the viscosity of a gas increases 
with increased temperature. In a liquid, the viscosity is due to cohesive forces, but 
in a gas, it is due to collisions of molecules; both of these phenomena are insensi-
tive to pressure. So we note that viscosity depends on only temperature in both a 
liquid and a gas, i.e., m = m(T).

The viscosity is often divided by density in equations so we have defi ned the 
kinematic viscosity to be

 v =
μ
ρ

 (1.16)

It has units of m2/s. In a gas, we note that kinematic viscosity does depend on pres-
sure since density depends on both temperature and pressure.

The volume of a gas is known to depend on pressure and temperature. In a liquid, 
the volume also depends slightly on pressure. If that small volume change (or den-
sity change) is important, we use the bulk modulus B, defi ned by

 B V
p

V

p

T T

= − =
Δ

Δ
Δ
Δ

ρ
ρ

 (1.17)

The bulk modulus has the same units as pressure. It is included in Table C.1. For water at 
20°C it is about 2100 MPa. To cause a 1% change in the volume of water, a pressure of 
21 000 kPa is needed. So, it is obvious why we consider water to be incompressible. The 
bulk modulus is also used to determine the speed of sound c in water. It is given by

 c B= /ρ  (1.18)

This yields about c = 1450 m/s for water at 20°C. 
Another property of occasional interest in our study is surface tension s. It results 

from the attractive forces between molecules, and is included in Table C.1. It allows 
steel to fl oat, droplets to form, and small droplets and bubbles to be spherical. Con-
sider the free-body diagram of a spherical droplet and a bubble, as shown in Fig. 1.6. 
The pressure force inside the droplet balances the force due to surface tension around 
the circumference:

 p r rπ π σ2 2=   ∴ =p
r

2σ
 (1.19)
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Notice that in a bubble there are two surfaces so that the force balance provides

 
p

r
=

4σ
 (1.20)

So, if the internal pressure is desired, it is important to know if it is a droplet or a bubble.
A second application where surface tension causes an interesting result is in the 

rise of a liquid in a capillary tube. The free-body diagram of the water in the tube is 
shown in Fig. 1.7. Summing forces on the column of liquid gives

 σπ β ρ π
D g

D
hcos =

2

4
 (1.21)

(a) (b)

ppr2

2prs

ppr2

2 × 2pr s

Figure 1.6 Free-body diagrams of (a) a droplet and (b) a bubble.

h

D

W

psD

Air
Liquid

b

Figure 1.7 The rise of a liquid in a small tube.
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where the right-hand side of the equation is the weight W. This provides the height 
the liquid will climb in the tube:

 h
D

=
4σ β

γ
cos

 (1.22)

The fi nal property to be introduced in this section is vapor pressure. Molecules 
escape and reenter a liquid that is in contact with a gas, such as water in contact 
with air. The vapor pressure is that pressure at which there is equilibrium between 
the escaping and reentering molecules. If the pressure is below the vapor pressure, 
the molecules will escape the liquid; it is called boiling when water is heated to the 
temperature at which the vapor pressure equals the atmospheric pressure. If the 
local pressure is decreased to the vapor pressure, vaporization also occurs. This can 
happen when liquid fl ows through valves, elbows, or around turbine blades, should 
the pressure become suffi ciently low; it is then called cavitation. The vapor pres-
sure is found in Tables C.1 and C.5.

EXAMPLE 1.3
A 0.5 m 2 m× fl at plate is towed at 5 m/s on a 2-mm-thick layer of SAE-30 oil 
at 38°C that separates it from a fl at surface. The velocity distribution between the 
plate and the surface is assumed to be linear. What force is required if the plate 
and surface are horizontal?

Solution
The velocity gradient is calculated to be

du

dy

u

y
= =

−
= −Δ

Δ
5 0

0 002
2500 1

.
s

The force is the stress multiplied by the area:

F A
du

dy
A= × = × = × × × =τ μ 0 1 2500 0 5 2 250. . N

Check the units to make sure the units of the force are newtons. The viscosity of 
the oil was found in Fig. C.1.
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EXAMPLE 1.4
A machine creates small 1.0-mm-diameter bubbles of 20°C-water. Estimate the 
pressure that exists inside the bubbles.

Solution
Bubbles have two surfaces leading to the following estimate of the pressure:

p
r

= =
×

=
4 4 0 0736

0 0005
589

σ .

.
Pa

where the surface tension was taken from Table C.1.

1.5 Thermodynamic Properties 
and Relationships 

A course in thermodynamics and/or physics usually precedes a fl uid mechanics 
course. Those properties and relationships that are presented in those courses that 
are used in our study of fl uids are included in this section. They are of particular 
use when compressible fl ows are studied, but they also fi nd application to liquid 
fl ows.

We use the ideal-gas law in one of the two forms

 p V mRT p RT= =or ρ  (1.23)

where the pressure p and the temperature T must be absolute quantities. The gas 
constant R is found in Table C.4. 

Enthalpy is defi ned as 

 H mu p V h u p= + = +� �or /ρ  (1.24)

where �u  is the specifi c internal energy (we use �u  since u is used for a velocity 
component). In an ideal gas we can use

 Δ Δh c dT u c dTp= =∫ ∫and � v  (1.25)
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where c cp and v
 are the specifi c heats also found in Table C.4. The specifi c heats 

are related to the gas constant by

 c c Rp = +v
 (1.26)

The ratio of specifi c heats is 

 k
c

c
p=
v

 (1.27)

For liquids and solids, and for most gases over relatively small temperature differ-
ences, the specifi c heats are essentially constant and we can use

 Δ Δ Δ Δh c T u c Tp= =and �
v

 (1.28)

For adiabatic (no heat transfer) quasiequilibrium (properties are constant 
throughout the volume at an instant) processes the following relationships can be 
used for an ideal gas assuming constant specifi c heats:

 

T

T

p

p

p

p

k k k

2

1

2

1

1

2

1

1

2

1

2=
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

=
− −( )/

ρ
ρ

ρ
ρρ1

⎛
⎝⎜

⎞
⎠⎟

k

 
(1.29)

The adiabatic, quasiequilibrium process is also called an isentropic process.
A small pressure wave with a relatively low frequency travels through a gas with 

a wave speed of

 c kRT=  (1.30)

Finally, the fi rst law of thermodynamics, which we will refer to simply as the
energy equation, will be of use in our study; it states that when a system, a fi xed set 
of fl uid particles, undergoes a change of state from state 1 to state 2, its energy 
changes from E

1
 to E

2
 as it exchanges energy with the surroundings in the form of 

work W1-2  and heat transfer Q1-2. This is expressed as

 Q W E E1-2 1-2− = −2 1  (1.31)

To calculate the heat transfer from given temperatures and areas, a course on heat 
transfer is required, so it is typically a given quantity in thermodynamics and fl uid 
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mechanics. The work, however, is a quantity that can often be calculated; it is a 
force times a distance and is often due to the pressure resulting in

 W Fdl
l

l

1-2 = ∫
1

2 = =∫ ∫pAdl pd V
l

l

V

V

1

2

1

2

 (1.32)

The energy E considered in a fl uids course consists of kinetic energy, potential 
energy, and internal energy: 

 E m
V

gz u= + +
⎛
⎝⎜

⎞
⎠⎟

2

2
�  (1.33)

where the quantity in the parentheses is the specifi c energy e. If the properties are 
constant at an exit and an entrance to a fl ow, and there is no heat transferred and no 
losses, the above equation can be put in the form

 
V

g

p
z

V

g

p
z2

2
2

2
2

1
2

1

1
12 2

+ + = + +
γ γ

 (1.34)

This equation does not follow directly from Eq. (1.31); it takes some effort to derive 
Eq. (1.34). An appropriate text could be consulted, but we will present it later in this 
book. It is presented here as part of our review of thermodynamics.

EXAMPLE 1.5
A farmer applies nitrogen to a crop from a tank pressurized to 1000 kPa  absolute 
at a temperature of 25°C. What minimum temperature can be expected in the 
nitrogen if it is released to the atmosphere?

Solution
The minimum exiting temperature occurs for an isentropic process [see Eq. (1.29)]; 
it is

T T
p

p

k k

2 1
2

1

1 0 4

298
100

1000
=

⎛
⎝⎜

⎞
⎠⎟

= × ⎛
⎝⎜

⎞
⎠⎟

−( )/ . // .1 4

154 119= − °K or C

Such a low temperature can cause serious injury should a hose break and the 
nitrogen impact the farmer. 
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         Quiz No. 1
 1. The correct units on viscosity are

(A) kg/(s · m)

(B) kg · m/s

(C) kg · s/m

(D) kg · m/s2

 2. The mean free path of a gas is λ ρ= 0 225 2. ( )m d/  where d is the molecule’s 
diameter, m is its mass, and r the density of the gas. Calculate the mean free path 
of air at sea level. For an air molecule d = 3 7 10 10. × − m and m = 4 8 10 26. × −  kg.

(A) 0.65×10−7 mm

(B) 6.5×10−7 m

(C) 65 nm

(D) 650 μm

 3. A vacuum of 25 kPa is measured at a location where the elevation is 
4000 m. The absolute pressure, in millimeters of mercury, is nearest

(A) 425 mm

(B) 375 mm

(C) 325 mm

(D) 275 mm

 4. The equation p z p e gz RT( ) /= −
0

0  is a good approximation to the pressure in 
the atmosphere. Estimate the pressure at 6000 m using this equation and 
calculate the percent error assuming p

0
 = 100 kPa and T

0
 = 15°C. (The more 

accurate value is found in Table C.3.) 

(A) 4.4%

(B) 4.0%

(C) 3.2%

(D) 2.6%

 5. A fl uid mass of 1500 kg occupies 2 m3. Its specifi c gravity is nearest

(A) 1.5

(B) 0.75 

(C) 0.30

(D) 0.15
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 6. A viscometer is composed of two 12-cm-long, concentric cylinders with 
radii 4 and 3.8 cm. The outer cylinder is stationary and the inner one 
rotates. If a torque of 0.046 N · m is measured on the inner cylinder at a 
rotational speed of 120 rpm, estimate the viscosity of the liquid. Neglect 
the contribution to the torque from the cylinder ends and assume a linear 
velocity profi le.

(A) 0.127 N · s/m2

(B) 0.149 N · s/m2

(C) 0.161 N · s/m2

(D) 0.177 N · s/m2

 7. A 0.1-m3 volume of water is observed to be 0.0982 m3 after a pressure is 
applied. What is that pressure?

(A) 37.8 MPa

(B) 24.2 MPa 

(C) 11.7 MPa

(D) 8.62 MPa

 8. The pressure inside a 20-μm-diameter bubble of 20°C water is nearest

(A) 17.8 kPa

(B) 24.2 kPa

(C) 29.4 kPa

(D) 38.2 kPa

 9. A car with tires pressurized to 270 kPa (40 psi) leaves Phoenix with the tire 
temperature at 60°C. Estimate the tire pressure (gage) when the car arrives 
in Alaska with a tire temperature of –30°C. 

(A) 270 kPa

(B) 210 kPa

(C) 190 kPa

(D) 170 kPa

 10. Air at 22°C is received from the atmosphere into a 200 cm3 cylinder. 
Estimate the pressure and temperature (MPa, °C) if it is compressed 
isentropically to 10 cm3.

(A) (6.53, 705)

(B) (5.72, 978)

(C) (4.38, 978)

(D) (7.43, 705)
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 11. Lightning is observed and thunder is heard 1.5 s later. About how far away 
did the lightning occur?

(A) 620 m

(B) 510 m

(C) 430 m

(D) 370 m

         Quiz No. 2
 1. If force, length, and time are selected as the three fundamental dimensions, 

what are the dimensions on mass?

 2. A pressure of 28 kPa is measured at an elevation of 2000 m. What is the 
absolute pressure in mm of Hg?

 3. Water at 20°C fl ows in a 0.8-cm-diameter pipe with a velocity distribution of 
u r r( ) [ ( ) ]= − ×5 1 16 102 6/ m/s. Calculate the shear stress on the pipe wall.

 4. SAE-30 oil at 30oC fi lls the gap between a 40-cm-diameter fl at disk rotating 
0.16 cm above a fl at surface. Estimate the torque needed to rotate the disk 
at 600 rpm.

 5. Water at 30°C is able to climb up a clean glass 0.2-mm-diameter tube due 
to surface tension. The water/glass angle is 0° with the vertical. How far up 
the tube does the water climb?

 6. Derive an equation that relates the vertical force F needed to just lift a thin 
wire loop from a liquid assuming a vertical surface tension force. The wire 
radius is r and the loop diameter is D. Assume D >> r.

 7. A 2-m-long, 4 cm-diameter shaft rotates inside an equally long 
4.02-cm-diameter cylinder. If SAE-10W oil at 25°C fi lls the gap between 
the concentric cylinders, estimate the horsepower needed to rotate the shaft 
at 1200 rpm assuming a linear velocity profi le.

 8. The coeffi cient of thermal expansion a
T 
 allows the expansion of a liquid to 

be determined using the equation Δ ΔV V TT= α .  What pressure is needed 
to cause the same decrease in volume of 2 m3 of 40°C water as that caused 
by a 10°C drop in temperature?

 9. Calculate the weight of the column of air contained above a 1-m2 area of 
atmospheric air from sea level to the top of the atmosphere.

 10. Air expands from a tank maintained at 18°C and 250 kPa to the 
atmosphere. Estimate its minimum temperature as it exits.
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Fluid Statics

In fl uid statics there is no relative motion between fl uid particles so there are no 
shear stresses present (a shear results from a velocity gradient). This does not mean 
that the fl uid particles are not moving, only that they are not moving relative to one 
another. If they are moving, as in a can of water rotating about its axis, they move as 
a solid body. The only stress involved in fl uid statics is the normal stress, the pres-
sure. It is the pressure acting over an area that gives rise to the force. Three types of 
problems are presented in this chapter: fl uids at rest, as in the design of a dam; fl u-
ids undergoing linear acceleration, as in a rocket; and fl uids that are rotating about 
an axis.

CHAPTER 2

2.1 Pressure Variation
Pressure is a quantity that acts at a point. But, does it have the same magnitude in 
all directions at the point? To answer this question, consider Fig. 2.1. A pressure p is 
assumed to act on the hypotenuse and different pressures p

x
and p

y
on the other 

two sides of the infi nitesimal element which has a uniform depth dz into the paper. 

mohi_rahimi
Typewritten text
  www.fluidsoroo.ir
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The fl uid particle occupying the fl uid element could be accelerating so we apply 
Newton’s second law in both the x- and y-directions:

 
∑ = − =

∑ =

F ma p dydz pdsdz
dxdydz

a

F ma

x x x x

y y

: sin

:

β ρ
2

pp dxdz pdsdz g
dxdydz dxdydz

ay y− − =cosβ ρ ρ
2 2

 (2.1)

recognizing1 that d V dxdydz= /2.  From Fig. 2.1 we have

 dy ds dx ds= =sin cosβ β  (2.2)

Substitute these into Eq. (2.1) and obtain

 
p p a dx

p p a g dy

x x

y y

− =

− = +

ρ

ρ
2

2
( )

 (2.3)

Here we see that the quantities on the right-hand sides of the equations are infi n-
itesimal (multiplied by dx and dy), and can be neglected2 so that

 p p px y= =  (2.4)

1We use the special symbol V  to represent volume and V to represent velocity.
2Mathematically, we could use an element with sides Δx and Δy and let Δx → 0 and  Δy → 0.

Figure 2.1 Pressure acting on an infi nitesimal element.

x

y

dy

dx

rgdV

ds
pxdydz

pdsdz

pydxdz

b
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Since the angle b is arbitrary, this holds for all angles. We could have selected 
dimensions dx and dz and arrived at p p px z= = . So, in our applications to fl uid 
statics, the pressure is a scalar function that acts equally in all directions at a point.

In the preceding discussion, pressure at a point was considered. But, how does 
pressure vary from point to point? The fl uid element of depth dy in Fig. 2.2 is 
assumed to be accelerating. Newton’s second law provides

 

pdydz p
p

x
dx dydz gdxdydza

pdxdy p

x− +⎛
⎝⎜

⎞
⎠⎟

=

− +

∂
∂

ρ

∂∂
∂
p

z
dz dxdy gdxdydz gdxdydzaz

⎛
⎝⎜

⎞
⎠⎟

= − +ρ ρ
 (2.5)

If the element were shown in the  y-direction also, the y-component equation would be

 pdxdz p
p

y
dy dxdz gdxdydzay− +

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂

ρ  (2.6)

These three equations reduce to

 
∂
∂

∂
∂

∂
∂

ρp

x
a

p

y
a

p

z
a gx y z= − = − = − +ρ ρ ( )  (2.7)

Figure 2.2 Forces acting on an element of fl uid.
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Finally, the pressure differential can be written as

 
dp

p

x
dx

p

y
dy

p

z
dz

a dx a dy a gx y z

= + +

= − − − +

∂
∂

∂
∂

∂
∂

ρ ρ ρ( ))dz
 

(2.8)

This can be integrated to give the desired difference in pressure between specifi ed 
points in a fl uid.  

In a fl uid at rest, there is no acceleration so the pressure variation from Eq. (2.8) is

 dp gdz dp dz= − = −ρ γor  (2.9)

This implies that as the elevation z increases, the pressure decreases, a fact that we 
are aware of in nature; the pressure increases with depth in the ocean and decreases 
with height in the atmosphere.

If g is constant, Eq. (2.9) allows us to write

 Δ Δp z= −γ  (2.10)

where Δp is the pressure change over the elevation change Δz. If we desire an 
expression for the pressure, a distance h below a free surface (the pressure is zero 
on a free surface), it would be 

 p h= γ  (2.11)

where h z= −Δ . Equation (2.11) is used to convert pressure to an equivalent height 
of a liquid; atmospheric pressure is often expressed as millimeters of mercury (the 
pressure at the bottom of a 30-in column of mercury is the same as the pressure at 
the earth’s surface due to the entire atmosphere). 

If the pressure variation in the atmosphere is desired, Eq. (2.9) would be used 
with the ideal-gas law p RT= ρ  to give

 dp
p

RT
gdz

dp

p

g

R

dz

Tp

p z
= − = −∫ ∫or

0
0

 (2.12)

where p
0
 is the pressure at z = 0. If the temperature could be assumed constant over 

the elevation change, this could be integrated to obtain

 p p e gz RT= −
0

/  (2.13)
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In the troposphere (between the earth’s surface and an elevation of about 10 km), 
the temperature in kelvins is T z= −288 0 0065. ; Eq. (2.12) can be integrated to give 
the pressure variation.

EXAMPLE 2.1
Convert 230 kPa to millimeters of mercury, inches of mercury, and feet of water.

Solution
Equation (2.11) is applied using the specifi c weight of mercury as 13 6. :γ water

p h h= = × ×γ 230 000 13 6 9800( . )

∴  h = 1.726 m of mercury or 1726 mm of mercury

This is equivalent to 1 726 3 281 12 68 0. . .m
ft

m

in

ft
in of mercur× × = yy.  Returning 

to Eq. (2.11), fi rst convert kPa to psf:

 

230 20 89 4805 4805 62 4kPa
psf

kPa
psf× = = ×

∴ =

. . h

h 777 0. ft of water

We could have converted meters of mercury to feet of mercury and then multi-
plied by 13.6 to obtain feet of water.

2.2 Manometers
A manometer is an instrument that uses a column of a liquid to measure pressure. A 
typical U-tube manometer containing mercury is attached to a water pipe, as shown 
in Fig. 2.3. There are several ways to analyze a manometer. One way is to identify 
two points that have the same pressure, i.e., they are at the same elevation in the 
same liquid, such as points 2 and 3. Then we write

 
p p

p h p H
2 3

1 4

=
+ = +γ γwater Hg

 (2.14)

Since point 4 is shown to be open to the atmosphere, p
4
 = 0. Thus, the manometer 

would measure the pressure p
1
 in the pipe to be

 p H h1 = −γ γHg water  (2.15)
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1

2

4

3
h

H

g water

Pipe

g mercury

Figure 2.3 A U-tube manometer using water and mercury.

Some manometers will have several fl uids with several interfaces. Each interface 
should be located with a point when analyzing a manometer.

EXAMPLE 2.2
A manometer connects an oil pipeline and a water pipeline, as shown. Determine 
the difference in pressure between the two pipelines using the readings on the 
manometer. Use S

oil 
= 0.86 and S

Hg
 = 13.6. 

1

2

4

3

Water

Mercury Oil

5

6

8 cm

4 cm

6 cm

Air

Solution
The points of interest have been positioned on the manometer shown. The pres-
sure at point 2 is equal to the pressure at point 3:

p p

p p
2 3

40 04 0 08

=
+ × = + ×water water Hgγ γ. .
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Observe that the heights must be in meters. The pressure at point 4 is essentially 
the same as that at point 5 since the specifi c weight of air is negligible compared 
to that of the oil. So, 

p p

p
4 5

0 06

=
= − ×oil oilγ .

Finally,

p pwater oil water Hg oil− = − × + × − ×γ γ γ0 04 0 08 0 06. . .

== − × + × × − × ×9800 0 04 13 6 9800 0 08 0 86 9800 0. ( . ) . ( . ) ..06

9760= Pa

2.3 Forces on Plane 
and Curved Surfaces 

When a liquid is contained by a surface, such as a dam, the side of a ship, a water 
tank, or a levee, it is necessary to calculate the force and its location due to the liquid. 
The liquid is most often water but it could be oil or some other liquid. We will 
develop equations for forces on plane surfaces, but forces on curved surfaces can 
be determined using the same equations. Examples will illustrate.

Consider the general surface shown in Fig. 2.4. The liquid acts on the plane area 
shown as a section of the wall; a view from the top gives additional detail of the 
geometry. The force on the plane surface is due to the pressure p = γh acting over 
the area, that is,

 
F pdA hdA

ydA yA

A A

A

= =

= =

∫ ∫
∫

γ

γ α γ αsin sin
 

(2.16)

where y is the distance3 to the centroid of the plane area; the centroid is identifi ed 
as the point C. Equation (2.16) can also be expressed as

 F hA= γ  (2.17)

3Recall that yA ydA
A

= ∫ .
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where h  is the vertical distance to the centroid. Since γ h  is the pressure at the cen-
troid we see that the magnitude of the force is the area times the pressure that acts 
at the centroid of the area. It does not depend on the angle a of inclination. But, the 
force does not, in general, act at the centroid.

Let’s assume that the force acts at some point called the center of pressure (c.p.), 
located by the point (x

p
, y

p
). To determine where this point is, we must recognize 

that the sum of the moments of all the infi nitesimal forces must equal the moment 
of the resultant force, that is,

 
y F yh dA

y dA I

p A

A x

=

= =

∫
∫

γ

γ α γ αsin sin2

 
(2.18)

where I
x
  is the second moment4 of the area about the x-axis. The parallel-axis-transfer 

theorem states that

 I I Ayx = + 2

 (2.19)

4Recall the second moment of a rectangle about its centroidal axis is bh3 12/ .

dy

g hdA

dA

C
c.p.

y

y

yp

Inclined
plane area

Inclined
plane area
(top view)

h

F

Free surface p = 0

x

O

O
a

Figure 2.4 The force on an inclined plane area.
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where I  is the moment of the area about its centroidal axis. So, substituting into 
Eq. (2.18) and using the expression for F from Eq. (2.16) results in

 y y
I

Ayp = +  (2.20)

This allows us to locate where the force acts. For a horizontal surface, the pressure 
is uniform over the area so that the pressure force acts at the centroid of the area. In 
general, y

p
 is greater than y. The centroids and second moments of various areas are 

presented in books on statics or strength of materials. They will be given in the 
problems in this book.

If the top of the inclined area in Fig. 2.4 were at the free surface, the pressure 
distribution on that area would be triangular and the force F due to that pressure 
would act through the centroid of that triangular distribution, i.e., two-third the 
distance from the top of the inclined area. 

To locate the  x-coordinate x
p
 of the center of pressure, we use

 x F xydA

I

p A

xy

=

=
∫γ α

γ α

sin

sin
 

(2.21)

where I
xy

 is the product of inertia of the area. Using the transfer theorem for the 
product of inertia, the x-location of the center of pressure is

 x x
I

Ayp
xy= +  (2.22)

The above equations also allow us to calculate the forces acting on curved sur-
faces. Consider the curved gate shown in Fig. 2.5a. The objective in this problem 
would be to fi nd the force P of the gate on the vertical wall and the forces F

x
 and F

y
 

on the hinge. From the free-body diagrams in parts (b) and (c), the desired forces 
can be calculated providing the force F

W
, which acts through the center of gravity 

of the area, can be found. The forces F
1
 and F

2
 can be found using Eq. (2.17). The 

forces F
H
 and F

V
 are the horizontal and vertical components of the force of the 

water acting on the gate. If a free-body diagram of only the water above the gate 
were identifi ed, we would see that

 F F F F FH V W= = +1 2and  (2.23)
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Often, the gate is composed of a quarter circle. In this case, the problem can be 
greatly simplifi ed by recognizing that the forces F

H
 and F

V
, when added together 

as a vector, must act through the center of the quarter circle since all the infi nitesi-
mal forces due to the water pressure on the gate that make up F

H
 and F

V
 act through 

the center. So, for a gate that has the form of a part of a circle, the force compo-
nents F

H
 and F

V
 can be located at the center of the circular arc. An example will 

illustrate.
A fi nal application of forces on surfaces involves buoyancy, i.e., forces on fl oat-

ing bodies. Archimedes’ principle states that there is a buoyancy force on a fl oating 
object equal to the weight of the displaced liquid, written as

 F VB = γ displaced liquid  (2.24)

Since there are only two forces acting on a fl oating body, they must be equal and 
opposite and act through the center of gravity of the body (the body could have 
density variations) and the centroid of the liquid volume. The body would position 
itself so the center of gravity of the body and centroid of the liquid volume would 
be on a vertical line. Questions of stability arise (does the body tend to tip?) but are 
not considered here.

Fx

F2

F1

Fy

P

FW

(b)

P

Fy

Fx

FV

FH

(c)

Hinge

Curved
surface

Water

(a)

Figure 2.5 Forces on a curved surface: (a) the gate, (b) the water and the gate,  and (c) the gate only.
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EXAMPLE 2.3
A 60-cm square gate has its top edge 12 m below the water surface. It is on a 45° 
angle and its bottom edge is hinged as shown in (a). What force P is needed to 
just open the gate?

(a) (b)

Water

Hinge

45°

P

P

F
yp

Fx

Fy

d

y

Solution
The fi rst step is to sketch a free-body diagram of the gate so the forces and dis-
tances are clearly identifi ed. It is provided in (b). The force F is calculated to be

F hA=
= × + × ° × × =

γ
9810 12 0 3 45 0 6 0 6 43130( . sin ) ( . . ) NN

We will take moments about the hinge so it will not be necessary to calculate the 
forces F

x
and F

y
. Let’s fi nd the distance d, the force F acts from the hinge:

y
h

y y
I

Ap

=
°

=
+ °

°
=

= +

sin

. sin

sin
.

45

12 0 3 45

45
17 27 m

yy
= +

×
× ×

=17 27
0 6 0 6 12

0 6 0 6 17 27
17 272

3

.
. .

( . . ) .
.

/
mm

m∴ = + − ≅d y yp0 3 0 3. .

Note: The distance y yp −  is very small and can be neglected because of the 
relatively large 12 m height compared to the 0.6 m dimension. So, the force P is 
calculated to be

P
F

=
×

=
0 3

0 6
21 600

.

.
N

Note also that all dimensions are converted to meters.
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EXAMPLE 2.4
Consider the gate shown to be a quarter circle of radius 80 cm with the hinge 8 m 
below the water surface (see Fig. 2.5). If the gate is 1 m wide, what force P is 
needed to hold the gate in the position shown?

Solution
Let’s move the forces F

H
 and FV to the center of the circular arc, as shown. This 

is allowed since all the infi nitesimal force components that make up the resultant 
vector force F FH V+  pass through the center of the arc. The forces that act on the 
gate are displayed. If moments are taken about the hinge, F F Fx y V, , and  produce 
no moments. So, there results

P FH=

FV

FH

Fy

Fx

P

Hinge

Water

a rather simple result compared to the situation if we used Fig. 2.5c. The force P is

P hA= = × − × ×
=

γ 9810 8 0 4 0 8 1

59600

( . ) ( . )

N

where F
H
 = F

1
, and F

1
 is the force on the vertical area shown in Fig. 2.5b.

2.4 Accelerating Containers
The pressure in a container accelerating with components a

x
 and a

y
 is found by 

integrating Eq. (2.8) between selected points 1 and 2 in Fig 2.6 to obtain

 p p a x x a g z zx z2 1 2 1 2 1− = − − − + −ρ ρ( ) ( )( )  (2.25)
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If points 1 and 2 lie on a constant-pressure line (e.g., a free surface) such that p p2 1= , as 
in Fig. 2.6, and az  = 0, Eq. (2.25) allows an expression for the angle a:

 
0 2 1 2 1

1 2

2

= − − − −

=
−
−

ρ ρ

α

a x x g z z

z z

x

x ( ) ( )

tan
xx

a

g
x

1

=
 (2.26)

If a
z
 is not zero, it is simply included. The above equations allow us to make calcu-

lations involving linearly accelerating containers. The liquid is assumed to not be 
sloshing; it is moving as a rigid body. An example will illustrate.

To determine the pressure in a rotating container, Eq. (2.8) cannot be used so it 
is necessary to derive the expression for the differential pressure. Refer to the infi n-
itesimal element of Fig. 2.7. A top view of the element is shown. Newton’s second 
law applied in the radial r-direction provides, remembering that a rr = Ω2 ,

prd dz p
p

r
dr r dr d dz pdrdz

d
pdrθ θ θ

− + + + +( )( ) sin
∂
∂ 2

ddz
d

rd drdz rsin
θ ρ θ
2

2= Ω

  (2.27)

Expand the second term carefully, use sin / /d dθ θ2 2= , neglect higher order terms, 
and simplify Eq. (2.27) to 

 ∂
∂
p

r
r= ρ Ω2  (2.28)

ax

1

2a

Figure 2.6 A linearly accelerating container.
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This provides the pressure variation in the radial direction and our usual dp = − rgdz 
provides the pressure variation in the z-direction. Holding z fi xed, the pressure dif-
ference from r

1
 to r

2
 is found by integrating Eq. (2.28):

 p p r r2 1

2

2
2

1
2

2
− = −

ρΩ
( )  (2.29)

If point 1 is at the center of rotation so that r1 0= , then p r2
2

2
2 2= ρΩ / . If the distance 

from point 2 to the free surface (where p
1
 = 0) is h as shown in Fig. 2.8, so that 

p gh2 = ρ , we see that

 h
r

g
=

Ω2
2
2

2
 (2.30) 

which is a parabola. The free surface is a paraboloid of revolution. An example 
illustrates the use of the above equations.

r

z

dr
dz

prdqdz pdrdz

pdrdz Volume = rdqdrdz
sin dq = dq

x

y

r

dq /2

dq /2 p + dr (r + dr)dqdz
∂r
∂p

Ω

q

Figure 2.7 The rotating container and the top view of the infi nitesimal element.

r2

1

2

h

Ω

z

Figure 2.8 The free surface in a rotating container.



CHAPTER 2 Fluid Statics 35

EXAMPLE 2.5
A 120-cm-long tank contains 80 cm of water and 20 cm of air maintained at 
60 kPa above the water. The 60-cm-wide tank is accelerated at 10 m/s2. After 
equilibrium is established, fi nd the force acting on the bottom of the tank.

Solution
First, sketch the tank using the information given in the problem statement. It 
appears as shown. 

ax

x

y

120 cm

80 cm

20 cm

Air
aWater

A B

The distance x can be related to y by using Eq. (2.26):

tan
.

.α = = = ∴ =
a

g

y

x
y xx 10

9 81
1 019

Equate the area of the air before and after to fi nd x and y:

120 20
1

2

1 019

2
68 6 69 92× = = ∴ = =xy x x y

.
. .cm and cm

The pressure will remain unchanged in the air above the water since the air vol-
ume doesn’t change. The pressures at A and B are then [use Eq. (2.25)]:

pA = + × × − + × =60 000 1000 10 1 20 0 686 9810 1 0 74( . . ) . m 9900

60 000 9810 1 00 0 699 62 900

Pa

PapB = + × − =( . . )

The average pressure on the bottom is ( )p pA B+ /2. Multiply the average pres-
sure by the area to fi nd the force acting on the bottom:

 
F

p p
AA B=

+
× =

+
× × =

2

74 900 62 900

2
1 2 0 6 49 600( . . ) N
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EXAMPLE 2.6
The cylinder shown is rotated about the center axis. What rotational speed is 
required so that the water just touches point A? Also, fi nd the force on the bottom 
of the cylinder for that speed.

20 cm

2 cm

16 cm
O

A

16 cm

Air

z Ω

Water

h

Solution
The volume of the air before and after must be the same. Recognizing that the 
volume of a paraboloid of revolution is half of the volume of a circular cylinder of 
the same radius and height, the height of the paraboloid of revolution is found:

π π× × = × ∴ =0 16 0 02
1

2
0 16 0 042 2. . . .h h m

Use Eq. (2.30) to fi nd Ω:

0 04
0 16

2 9 81
5 54

2 2

.
.

.
.=

×
×

∴ =
Ω

Ω rad/s

The pressure p on the bottom as a function of the radius r is given by

p p r r− = −0

2
2

1
2

2

ρΩ
( )  where  p0

 = 9810 × (0.22 − 0.04) = 1766 Pa. So,

           
p r r=

×
+ = +

1000 5 54

2
1766 15 346 1766

2
2 2.
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The pressure is integrated over the area to fi nd the force to be

( )
..

15 346 1766 2 2 15 346
0 16

4
172

0

0 16 4

r rdr+ = × +∫ π π 666
0 016

2
157 8

2

×
⎛
⎝⎜

⎞
⎠⎟

=
.

. N

Or, the force is simply the weight of the water: 

F V= = × × × =γ π9810 0 16 0 2 157 82. . . N

Quiz No. 1
 1. Two meters of water is equivalent to how many millimeters of mercury?

(A) 422 mm

(B) 375 mm

(C) 231 mm

(D) 147 mm

 2. A U-tube manometer measures the pressure in an air pipe to be 10 cm of 
water. The pressure in the pipe is nearest

(A) 843 Pa

(B) 981 Pa

(C) 1270 Pa

(D) 1430 Pa
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 3. Calculate the pressure in the water pipe if h = 15 cm and H = 25 cm.

       

1

2

4

3
h

H

gwater

Pipe

g mercury

(A) 22.8 kPa

(B) 27.3 kPa

(C) 31.9 kPa

(D) 39.1 kPa

 4. A submersible has a viewing window that is 60 cm in diameter. Determine 
the pressure force of the water on the window if the center of the window is 
30 m below the surface and the horizontal window.

(A) 65.8 kN

(B) 79.3 kN

(C) 83.2 kN

(D) 99.1 kN

 5. A 3-m-high, open cubical tank is fi lled with water. One end acts as a gate 
and has a hinge at the very bottom. What force at the very top of the gate is 
needed to just hold the gate shut?

(A) 44.1 kN

(B) 38.2 kN

(C) 23.9 kN

(D) 20.1 kN
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 6. The gate shown will open automatically when the water level reaches a 
certain height above the hinge. Determine that height if b is 1.6 m.

        

Hinge

Water

H

b

(A) 1.87 m

(B) 2.12 m

(C) 2.77 m

(D) 2.91 m

 7. A body weighs 200 N in air and 125 N when submerged in water. Its 
specifi c weight is nearest

(A) 2.31

(B) 2.49

(C) 2.54

(D) 2.67

 8. A 1.4-m-high, 4.2-m-long enclosed tank is fi lled with water and accelerated 
horizontally at 6 m/s2. If the top of the tank has a small slit across the front, 
the maximum pressure in the tank is nearest

(A) 38.9 kPa

(B) 45.8 kPa

(C) 59.7 kPa

(D) 66.7 kPa

 9. The force on the rear of the 80-cm-wide tank (the vertical end) of 
Prob. 8 is nearest

(A) 108 kN

(B) 95 kN

(C) 79 kN

(D) 56 kN
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 10. A test tube is placed in a rotating device that gradually positions the tube to a
horizontal position. If the rate is 1000 rpm, estimate the pressure at the bottom 
of the relatively small-diameter test tube. The 12-cm-long tube contains water 
and the top of the tube is at a radius of 4 cm from the axis or rotation.

(A) 723 kPa

(B) 658 kPa

(C) 697 kPa

(D) 767 kPa

 11. The U-tube is rotated about the right leg at 100 rpm. Calculate the pressures 
at A and B in the water if L is 40 cm.

          x
L

L

A

z

B

Open

L

(A) 6770 Pa, 3920 Pa

(B) 7530 Pa, 2780 Pa

(C) 8770 Pa, 3920 Pa

(D) 9620 Pa, 2780 Pa

Quiz No. 2
 1. The specifi c gravity of a liquid is 0.75. What height of that liquid is needed 

to provide a pressure difference of 200 kPa?

 2. Assume a pressure of 100 kPa absolute at ground level. What is the pressure 
difference between the top of a 3-m-high wall on the outside where the 
temperature is –20°C and on the inside of a house where the temperature is 
22°C? (This difference results in infi ltration even if no wind is present.)

 3. The pressure at the nose of a small airplane is given by p V= ρ 2 2/ , where 
r is the density of air. A U-tube manometer measures 25 cm of water. 
Determine the airplane’s speed if it is fl ying at an altitude of 4000 m.

 4. A submersible has a viewing window that is 60 cm in diameter. Determine 
the pressure force of the water on the window if the center of the window is 
30 m below the surface and the window is at a 45° angle.
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 5. Find the force P needed to hold the 2-m-wide gate in the position shown if 
h = 1.2 m. 

     

65°

P

80 cm

Waterh

Hinge

 6. Find the force P needed to hold the 3-m-wide gate in the position shown if 
r = 2 m.

   

P

Water

Quarter circle
      radius = r

60 cm

Hinge

 7. An object with a volume of 1200 cm3 weighs 20 N. What will it weigh 
when submerged in water?

8. A 1-m-high, 2-m-long enclosed tank is fi lled with water and accelerated 
horizontally at 6 m/s2. If the top of the tank has a small slit across the back, 
calculate the distance from the front of the tank on the bottom where the 
pressure is zero.

 9. Estimate the force acting on the bottom of the 80-cm-wide tank of Prob. 8.

 10. Find the pressure at point A in the cylinder if w  = 100 rpm and R is 60 cm.

  

Water

Air

w

R

1.5R

0.4R

A
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Fluids in Motion

Fluid motions are quite complex and require rather advanced mathematics to 
describe them if all details are to be included. Simplifying assumptions can reduce 
the mathematics required, but even then the problems can get rather involved 
mathematically. To describe the motion of air around an airfoil, a tornado, or even 
water passing through a valve, the mathematics becomes quite sophisticated and 
is beyond the scope of an introductory course. We will, however, derive the equa-
tions needed to describe such motions, and make simplifying assumptions that 
will allow a number of problems of interest to be solved. These problems will 
include fl ow through a pipe and a channel, around rotating cylinders, and in a thin 
boundary layer near a fl at wall. They will also include compressible fl ows involv-
ing simple geometries.

The pipes and channels will be straight and the walls perfectly fl at. Fluids are all 
viscous, but often we can ignore the viscous effects. If viscous effects are to be 
included, we can demand that they behave in a linear fashion, a good assumption 
for water and air. Compressibility effects can also be ignored for low velocities 
such as those encountered in wind motions (including hurricanes) and fl ows around 
airfoils at speeds below about 100 m/s (220 mph). 

CHAPTER 3

mohi_rahimi
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      www.fluidsoroo.ir
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In this chapter we will describe fl uid motion in general, classify the different types 
of fl uid motion, and also introduce the famous Bernoulli’s equation along with its 
numerous assumptions.

3.1 Fluid Motion
LAGRANGIAN AND EULERIAN DESCRIPTIONS
Motion of a group of particles can be thought of in two basic ways: focus can be on 
an individual particle, such as following a particular car on a highway (a police 
patrol car may do this while moving with traffi c), or it can be at a particular location 
as the cars move by (a patrol car sitting along the highway does this). When ana-
lyzed correctly, the solution to a problem would be the same using either approach 
(if you’re speeding, you’ll get a ticket from either patrol car).

When solving a problem involving a single object, such as in a dynamics course, 
focus is always on the particular object: the Lagrangian description of motion. It is 
quite diffi cult to use this description in a fl uid fl ow where there are so many parti-
cles. Let’s consider a second way to describe a fl uid motion.

At a general point (x, y, z) in a fl ow, the fl uid moves with a velocity V(x, y, z, t). 
The rate of change of the velocity of the fl uid as it passes the point is ∂ V/∂ t, ∂ V/∂ y, 
∂ V/∂ z, and it may also change with time at the point: ∂ V/∂ t. We use partial deriv-
atives here since the velocity is a function of all four variables. This is the Eulerian
description of motion, the description used in our study of fl uids. We have used 
rectangular coordinates here but other coordinate systems, such as cylindrical coor-
dinates, can also be used. The region of interest is referred to as a fl ow fi eld and the 
velocity in that fl ow fi eld is often referred to as the velocity fi eld. The fl ow fi eld 
could be the inside of a pipe, the region around a turbine blade, or the water in a 
washing machine.

If the quantities of interest using the Eulerian description were not dependent on 
time t, we would have a steady fl ow; the fl ow variables would depend only on the 
space coordinates. For such a fl ow,

 

∂
∂

∂
∂

∂
∂

V
t

p

t t
= = =0 0 0

ρ
 (3.1)

to list a few. In the above partial derivatives, it is assumed that the space coordinates 
remain fi xed; we are observing the fl ow at a fi xed point. If we followed a particular 
particle, as in a Lagrangian approach, the velocity of that particle would, in general, 
vary with time as it progressed through a fl ow fi eld. But, using the Eulerian descrip-
tion, as in Eq. (3.1), time would not appear in the expressions for quantities in a 
steady fl ow, regardless of the geometry.
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PATHLINES, STREAKLINES, AND STREAMLINES
Three different lines can be defi ned in a description of a fl uid fl ow. The locus of 
points traversed by a particular fl uid particle is a pathline; it provides the history of 
the particle. A time exposure of an illuminated particle would show a pathline. A 
streakline is the line formed by all particles passing a given point in the fl ow; it 
would be a snapshot of illuminated particles passing a given point. A streamline is 
a line in a fl ow to which all velocity vectors are tangent at a given instant; we can-
not actually photograph a streamline. The fact that the velocity is tangent to a 
streamline allows us to write

 V r× =d 0  (3.2)

since V and dr are in the same direction, as shown in Fig. 3.1; recall that two vec-
tors in the same direction have a cross product of zero.

In a steady fl ow, all three lines are coincident. So, if the fl ow is steady, we can 
photograph a pathline or a streakline and refer to such a line as a streamline. It is the 
streamline in which we have primary interest in our study of fl uids. 

A streamtube is a tube whose walls are streamlines. A pipe is a streamtube, as 
is a channel. We often sketch a streamtube in the interior of a fl ow for derivation 
purposes. 

ACCELERATION
To make calculations for a fl uid fl ow, such as forces, it is necessary to describe the 
motion in detail; the expression for the acceleration is usually needed. Consider a 
fl uid particle having a velocity V(t) at an instant t, as shown in Fig. 3.2. At the next 
instant, t + Δ t, the particle will have velocity V(t + Δ t), as shown. The acceleration 
of the particle is

 
a

V
=

d

dt
 (3.3)

dr

V

V
V

x

y

Figure 3.1 A streamline.
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where dV is shown in Fig 3.2(b). From the chain rule of calculus, we know that

 
d

x
dx

y
dy

z
dz

t
dtV

V V V V
= + + +

∂
∂

∂
∂

∂
∂

∂
∂

 (3.4)

since V = V(x, y, z, t). This gives the acceleration as

 
a

V V V V V
= = + + +

d

dt x

dx

dt y

dy

dt z

dz

dt t

∂
∂

∂
∂

∂
∂

∂
∂

 (3.5)

Now, since V is the velocity of a particle at (x, y, z), we let 

 V i j k= + +u v w  (3.6)

where (u, v, w) are the velocity components of the particle in the x-, y-, and z-directions, 
respectively, and i, j, and k are the unit vectors. For the particle at the point of inter-
est, we have

 

dx

dt
u

dy

dt

dz

dt
= = =v w  (3.7)

so that the acceleration can be expressed as

 a
V V V V

= + + +u
x y t

∂
∂

∂
∂

∂
∂

∂
∂

v w
z

 (3.8)

In Eq. (3.8), the time derivative of velocity represents the local acceleration and the 
other three terms represent the convective acceleration. Local acceleration results if 
the velocity changes with time (e.g., startup), whereas convective acceleration 
results if velocity changes with position (as occurs at a bend or in a valve). 

(a) (b)

V(t) V(t + dt)

x

y

z

Fluid particle
at time t

Fluid particle
at time t + dt

dV

V(t)

Velocity triangle

V(t + dt)

Figure 3.2 The velocity of a fl uid particle.
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It is important to note that the expressions for the acceleration have assumed an 
inertial reference frame, i.e., the reference frame is not accelerating. It is assumed 
that a reference frame attached to the earth has negligible acceleration for problems 
of interest in this book. If a reference frame is attached to, say, a dishwasher spray 
arm, additional acceleration components, such as the Coriolis acceleration, enter 
the expression for the acceleration vector.

The vector equation (3.8) can be written as the three scalar equations:
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∂
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t

a u
x y tz  

(3.9)

We write Eq. (3.3), and often Eq. (3.8), as 

 
a

V
=

D

Dt
 (3.10)

where D/Dt is called the material, or substantial derivative since we have fol-
lowed a material particle, or the substance. In rectangular coordinates, the material 
derivative is

 

D

Dt
u

x y z t
= + + +

∂
∂

∂
∂

∂
∂

∂
∂

v w  (3.11)

It can be used with other quantities of interest, such as the pressure: Dp/Dt would 
represent the rate of change of pressure of a fl uid particle at some point (x, y, z).

The material derivative and acceleration components are presented for cylindri-
cal and spherical coordinates in Table 3.1 at the end of this section.

ANGULAR VELOCITY AND VORTICITY
Visualize a fl uid fl ow as the motion of a collection of fl uid elements that deform 
and rotate as they travel along. At some instant in time, we could think of all the 
elements that make up the fl ow as being little cubes. If the cubes simply deform and 
don’t rotate, we refer to the fl ow, or a region of the fl ow, as an irrotational fl ow. 
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We are interested in such fl ows in our study of fl uids; they exist in tornados away 
from the “eye” and in the fl ow away from the surfaces of airfoils and automobiles. 
If the cubes do rotate, they possess vorticity. Let’s derive the equations that allow 
us to determine if a fl ow is irrotational or if it possesses vorticity.

Consider the rectangular face of an infi nitesimal volume shown in Fig. 3.3. The 
angular velocity Ωz about the z-axis is the average of the angular velocity of seg-
ments AB and AC, counterclockwise taken as positive:
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If we select the other faces, we would fi nd 
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These three components of the angular velocity represent the rate at which a fl uid 
particle rotates about each of the coordinate axes. The expression for Ωz would
predict the rate at which a cork would rotate in the xy-surface of the fl ow of water 
in a channel. 

The vorticity vector w is defi ned as twice the angular velocity vector: w = 2Ω. 
The vorticity components are 
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Figure 3.3 The rectangular face of a fl uid element.
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Table 3.1 The Material Derivative and Acceleration in Cylindrical and Spherical Coordinates
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EXAMPLE 3.1 
A velocity fi eld in a plane fl ow is given by V = 2yti + xj. Find the equation of the 
streamline passing through (4, 2) at t = 2.

Solution
Equation (3.2) can be written in the form

 ( ) ( ) ( )2 2yt x dx dy ytdy xdxi j i j k 0+ × + = − =  

This leads to the equation, at t = 2,

 4ydy xdx=  

Integrate to obtain

 4 2 2y x C− =  

The constant is evaluated at the point (4, 2) to be C = 0. So, the equation of the 
streamline is

 x y2 24=  

Distance is usually measured in meters and time in seconds so that velocity 
would have units of m/s. 
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EXAMPLE 3.2
For the velocity fi eld V i j k= + −2 4 2xy tz yz , fi nd the acceleration, the angular 
velocity about the z-axis, and the vorticity vector at the point (2, −1, 1) at t = 2.

Solution
The acceleration is found, using u xy tz yz= = = −2 4 2, , ,andv w  as follows:
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At the point (2, −1, 1) and t = 2 there results
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The angular velocity component Ωz is
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At the point (2, −1, 1) and t = 2, Ωz = 2. The vorticity vector is
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At the point (2, −1, 1) and t = 2, it is

 ω = − − − = − −( )1 16 4 17 4i k i k  

Distance is usually measured in meters and time in seconds. Thus, angular velocity 
and vorticity would have units of m/s/m, i.e., rad/s.

3.2 Classifi cation of Fluid Flows
Fluid mechanics is a subject in which many rather complicated phenomena are 
encountered, so it is important that we understand some of the descriptions and 
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simplifi cations of several special fl uid fl ows. Such special fl ows will be studied in 
detail in later chapters. Here we will attempt to classify them in as much detail as 
possible.

UNIFORM, ONE-, TWO-, AND 
THREE-DIMENSIONAL FLOWS
A dependent variable in our study of fl uids depends, in general, on the three space 
coordinates and time, i.e., V(x, y, z, t). The fl ow that depends on three space coor-
dinates is a three-dimensional fl ow; it could be a steady fl ow if time is not involved, 
such as would be the case in the fl ow near the intersection of a wing and the fuse-
lage of an aircraft fl ying at a constant speed. The fl ow in a washing machine would 
be an unsteady, three-dimensional fl ow.

Certain fl ows can be approximated as two-dimensional fl ows; fl ows over a wide 
weir, in the entrance region of a pipe, and around a sphere are examples that are of 
special interest. In such two-dimensional fl ows the dependent variables depend on 
only two space variables, i.e., p(r,q) or V(x, y, t). If the space coordinates are x and y, 
we refer to the fl ow as a plane fl ow.

One-dimensional fl ows are fl ows in which the velocity depends on only one 
space variable. They are of special interest in our introductory study since they 
include the fl ows in pipes and channels, the two most studied fl ows in an introduc-
tory course. For fl ow in a long pipe, the velocity depends on the radius r, and in a 
wide channel (parallel plates) it depends on y, as shown in Fig. 3.4.

The fl ows shown in Fig. 3.4 are also referred to as developed fl ows; the velocity 
profi les do not change with respect to the downstream coordinate. This demands 
that the pipe fl ow shown is many diameters downstream of any change in geometry, 
such as an entrance, a valve, an elbow, or a contraction or expansion. If the fl ow has 
not developed, the velocity fi eld depends on more than one space coordinate, as is 
the case near a geometry change. The developed fl ow may be unsteady, i.e., it may 
depend on time, such as when a valve is being opened or closed.

Finally, there is the uniform fl ow, as shown in Fig. 3.5; the velocity profi le, and 
other properties such as pressure, is uniform across the section of pipe. This profi le 

u(y)
x

y

(b)(a)

u(r)
x

r

Figure 3.4 One-dimensional fl ow: (a) fl ow in a pipe and (b) fl ow in a wide channel.
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is often assumed in pipe and channel fl ow problems since it approximates the more 
common turbulent fl ow so well. We will make this assumption in many of the prob-
lems throughout this book.

VISCOUS AND INVISCID FLOWS
In an inviscid fl ow the effects of viscosity can be completely neglected with no sig-
nifi cant effects on the solution to a problem. All fl uids have viscosity and if the 
viscous effects cannot be neglected, it is a viscous fl ow. Viscous effects are very 
important in pipe fl ows and many other kinds of fl ows inside conduits; they lead to 
losses and require pumps in long pipelines. But, there are fl ows in which we can 
neglect the infl uence of viscosity. 

Consider an external fl ow, fl ow external to a body, such as the fl ow around an 
airfoil or a hydrofoil, as shown in Fig. 3.6. If the airfoil is moving relatively fast 
(faster than about 1 m/s), the fl ow away from a thin layer near the boundary, a 
boundary layer, can be assumed to have zero viscosity with no signifi cant effect on 
the solution to the fl ow fi eld (the velocity, pressure, temperature fi elds). All the 
viscous effects are concentrated inside the boundary layer and cause the velocity to 
be zero at the surface of the airfoil, the no-slip condition. Since inviscid fl ows are 
easier to solve than viscous fl ows, the recognition that the viscosity can be ignored 
in the fl ow away from the surface leads to much simpler solutions. This will be 
demonstrated in Chap. 8 (External Flows). 

Vx
r

Figure 3.5 A uniform fl ow in a pipe.

Inviscid flow
Chord, c

Boundary layer

a

Figure 3.6 Flow around an airfoil.
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LAMINAR AND TURBULENT FLOWS
A viscous fl ow is either a laminar fl ow or a turbulent fl ow. In a turbulent fl ow there 
is mixing of fl uid particles so that the motion of a given particle is random and very 
irregular; statistical averages are used to specify the velocity, the pressure, and 
other quantities of interest. Such an average may be “steady” in that it is indepen-
dent of time, or the average may be unsteady and depend on time. Figure 3.7 shows 
steady and unsteady turbulent fl ows. Notice the noisy turbulent fl ow from a faucet 
when you get a drink of water.

In a laminar fl ow there is negligible mixing of fl uid particles; the motion is 
smooth and noiseless, like the slow fl ow of water from a faucet. If a dye is injected 
into a laminar fl ow, it remains distinct for a relatively long period of time. The dye 
would be immediately diffused if the fl ow were turbulent. Figure 3.8 shows a steady 
and an unsteady laminar fl ow. A laminar fl ow could be made to appear turbulent by 
randomly controlling a valve in the fl ow of honey in a pipe so as to make the veloc-
ity appear as in Fig. 3.7. Yet, it would be a laminar fl ow since there would be no 
mixing of fl uid particles. So, a simple display of V(t) is not suffi cient to decide if a 
particular fl ow is laminar or turbulent. To be turbulent, the motion has to be ran-
dom, as in Fig. 3.7, but it also has to have mixing of fl uid particles.

V(t)V(t)

tt
(a) (b)

Figure 3.8 (a) Steady and (b) unsteady laminar fl ows.

V(t)

t t

V(t)

(a) (b)

Figure 3.7 (a) Steady and (b) unsteady turbulent fl ows.
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As a fl ow starts from rest, as in a pipe when a valve is slightly opened, the fl ow 
starts out laminar, but as the average velocity increases, the laminar fl ow becomes 
unstable and turbulent fl ow ensues. In some cases, as in the fl ow between rotating 
cylinders, the unstable laminar fl ow develops into a secondary laminar fl ow of vor-
tices, and then a third laminar fl ow, and fi nally a turbulent fl ow at higher speeds.

There is a quantity, called the Reynolds number, that is used to determine if a 
fl ow is laminar or turbulent. It is 

 
Re =

VL

ν
 (3.15)

where V is a characteristic velocity (the average velocity in a pipe or the speed of 
an airfoil), L is a characteristic length (the diameter of a pipe or the distance from 
the leading edge of a fl at plate), and n is the kinematic viscosity. If the Reynolds 
number is larger than a critical Reynolds number, the fl ow is turbulent; if it is lower 
than a critical Reynolds number, the fl ow is laminar. For fl ow in a pipe, assuming 
the typically rough pipe wall, the critical Reynolds number is usually taken to be 
2000; if the wall is smooth and free of vibrations, and the entering fl ow is free of 
disturbances, the critical Reynolds number can be as high as 40 000. The critical 
Reynolds number is different for each geometry. For fl ow between parallel plates, 
it is taken as 1500 using the average velocity and the distance between the plates. 
For a boundary layer on a fl at plate, it is between 3 × 105 and 106, using L as the 
distance from the leading edge.

We do not refer to an inviscid fl ow as laminar or turbulent. In an external fl ow, 
the inviscid fl ow is called a free-stream fl ow. A free stream has disturbances but the 
disturbances are not accompanied by shear stresses, another requirement of both 
laminar and turbulent fl ows. The free stream can also be irrotational or it can pos-
sess vorticity. 

A boundary layer is a thin layer of fl uid that develops on a body due to the vis-
cosity causing the fl uid to stick to the boundary; it causes the velocity to be zero at 
the wall. The viscous effects in such a layer can actually incinerate a satellite on 
reentry. Figure 3.9 shows the typical boundary layer on a fl at plate. It is laminar 
near the leading edge and undergoes transition to a turbulent fl ow with suffi cient 

Laminar
flow

Turbulent
flow

Transition

V

Inviscid flow

Figure 3.9 Boundary-layer fl ow on a fl at plate.
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length. For a smooth rigid plate with low free-stream fl uctuation level, a laminar 
layer can exist up to Re = 106, L being the length along the plate; for a rough plate, 
or a vibrating plate, or high free-stream fl uctuations, a laminar fl ow exists up to 
about Re = 3 × 105.

INCOMPRESSIBLE AND COMPRESSIBLE FLOWS
Liquid fl ows are assumed to be incompressible in most situations (water hammer1 
is an exception). In such incompressible fl ows the density of a fl uid particle as it 
moves along is assumed to be constant, i.e.,

 

D

Dt

ρ
= 0  (3.16)

This does not demand that the density of all the fl uid particles be the same. For 
example, salt could be added to a water fl ow at some point in a pipe so that down-
stream of the point the density would be greater than at some upstream point. Atmo-
spheric air at low speeds is incompressible but the density decreases with increased 
elevation, i.e., r = r(z), where z is vertical. We usually assume a fl uid to have con-
stant density when we make the assumption of incompressibility. Constant density 
requires
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The fl ow of air can be assumed to be incompressible if the velocity is suffi ciently 
low. Air fl ow in conduits, around automobiles and small aircraft, and the takeoff 
and landing of commercial aircraft are all examples of incompressible airfl ows. The 
Mach number M where

 
M =

V

c
 (3.18)

is used to determine if a fl ow is compressible; V is the characteristic velocity and 
c kRT=  is the speed of sound. If M < 0.3, we assume the fl ow to be incompress-
ible. For air near sea level this is about 100 m/s (200 mph) so many air fl ows can be 
assumed to be incompressible. Compressibility effects are considered in some 
detail in Chap. 9 (Compressible Flows).

1Water hammer may occur when a sudden change occurs in a fl ow, such as a sudden clos-
ing of a valve.
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EXAMPLE 3.3 
A river fl owing through campus appears quite placid. A leaf fl oats by and we 
estimate that it fl oats about 2 m in 10 s. We wade in the water and estimate the 
depth to be about 60 cm. Is the fl ow laminar or turbulent?

Solution
We estimate the Reynolds number to be, assuming T = 20°C and using Table C.1,
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The fl ow is highly turbulent at this Reynolds number, contrary to our observation 
of the placid fl ow. Most internal fl ows are turbulent, as observed when we drink 
from a drinking fountain. Laminar fl ows are of minimal importance to engineers 
when compared to turbulent fl ows; a lubrication problem is one exception.

3.3 Bernoulli’s Equation
Bernoulli’s equation may be the most often used equation from fl uid mechanics, but 
it is also the most often misused equation. In this section it will be derived and the 
restrictions required for its derivation will be highlighted. But, before the equation 
is derived, consider the fi ve assumptions required: negligible viscous effects (no 
shear stresses), constant density, steady fl ow, the fl ow is along a streamline, and the 
velocity is measured in an inertial reference frame. 

We apply Newton’s second law to a cylindrical particle that is moving on a 
streamline, as shown in Fig. 3.10. A summation of infi nitesimal forces acting on the 
particle is

 pdA p
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where a
s
 is the s-component of the acceleration vector. It is given by Eq. (3.9) 

where we think of the x-direction being in the s-direction so that u = V:
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 (3.20)

where ∂ V/∂ t = 0, assuming a steady fl ow. (This leads to the same acceleration 
expression as presented in physics or dynamics where ax = VdV/dx, providing an 
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inertial reference frame is used in which no Coriolis or other acceleration compo-
nents are present.) Next, we observe that

 
dh ds

h
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ds= =cosθ ∂

∂
 (3.21)

resulting in
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Now, divide Eq. (3.19) by dsdA and use the above expressions for as and cosq and 
rearrange. There results
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If we assume that the density r is constant (this is more restrictive than incompress-
ibility) so it can be moved after the partial derivative, and we recognize that V∂ V/∂ s =
∂ (V 2/2)/∂ s, we can write our equation as
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Figure 3.10 A particle moving along a streamline.
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This means that along a streamline the quantity in parentheses is constant, i.e.,
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where the constant may change from one streamline to the next; along a given 
streamline the sum of the three terms is constant. This is often written, referring to 
two points on the same streamline, as
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or
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Either of the two forms above is the famous Bernoulli’s equation. Let’s once again 
state the assumptions required to use Bernoulli’s equation:

• Inviscid fl ow (no shear stresses)

• Constant density

• Steady fl ow

• Along a streamline

• Applied in an inertial reference frame

The fi rst three listed are primarily ones usually considered. There are special appli-
cations where the last two must be taken into account; but those special applications 
will not be presented in this book. Also, we often refer to a constant-density fl ow as 
an incompressible fl ow, even though constant density is more restrictive [refer to 
the comments after Eq. (3.16)]. This is because incompressible fl ows, in which the 
density changes from one streamline to the next, such as in atmospheric fl ows, are 
not encountered in an introductory course.

Note that the units on all the terms in Eq. (3.26) are meters. Consequently, V 2/2g 
is called the velocity head, p/rg is the pressure head, and h is simply the head. The 
sum of the three terms is often referred to as the total head. The pressure p is the 
static pressure and the sum p + rV 2/2 is the total pressure or stagnation pressure 
since it is the pressure at a stagnation point, a point where the fl uid is brought to rest 
along a streamline.

The difference in the pressures can be observed by considering the measuring 
probes shown in Fig. 3.11. The probe in Fig. 3.11a is a piezometer; it measures the 
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static pressure, or simply, the pressure at point 1. The pitot tube in Fig. 3.11b mea-
sures the total pressure, the pressure at a point where the velocity is zero, as at point 2. 
And, the pitot-static tube, which has a small opening the side of the probe as shown 
in Fig. 3.11c, is used to measure the difference between the total pressure and the 
static pressure, i.e., rV 2/2; this is used to calculate the velocity. The expression for 
velocity is

 
V p p= −

2
2 1ρ

( )  (3.28)

where point 2 must be a stagnation point with V
2
 = 0. So, if only the velocity is 

desired, we simply use the pitot-static probe shown in Fig. 3.11c. 
Bernoulli’s equation is used in numerous fl uid fl ows. It can be used in an internal 

fl ow over short reaches if the viscous effects can be neglected; such is the case in 
the well-rounded entrance to a pipe (see Fig. 3.12) or in a rather sudden contraction 
of a pipe. The velocity for such an entrance is approximated by Bernoulli’s equation 
to be

 
V p p2 1 2

2
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ρ
( )  (3.29)

Another common application of the Bernoulli’s equation is from the free stream to 
the front area of a round object such as a sphere or a cylinder or an airfoil. A sketch 

V

p1 (Static pressure) p2 (Total pressure) p2 – p1

1 2

Static pressure
opening

(a) (b) (c)

Figure 3.11 Pressure probes: (a) the piezometer, (b) a pitot tube, 
and (c) a pitot-static tube.
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is helpful, as shown in Fig. 3.13. For many fl ow situations the fl ow separates from 
the surface, resulting in a separated fl ow, as shown. If the fl ow approaching the 
object is uniform, the constant in Eq. (3.25) will be the same for all the streamlines. 
Bernoulli’s equation can then be applied from the free stream to the stagnation 
point at the front of the object, and to points along the surface of the object up to the 
separation region.

We often solve problems involving a pipe exiting to the atmosphere. For such a 
situation the pressure just inside the pipe exit is the same as the atmospheric pres-
sure just outside the pipe exit, since the streamlines exiting the pipe are straight near 
the exit (see Fig. 3.12). This is quite different from the entrance fl ow of Fig. 3.12 
where the streamlines near the entrance are extremely curved. 

To approximate the pressure variation normal to a curved streamline, consider 
the particle of Fig. 3.10 to be a parallelepiped with thickness dn normal to the 
streamline, with area dA

s
 of the side, and with length ds. Use ∑ =F man n:
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Figure 3.12 Flow from a reservoir through a pipe.

V
Separated
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Figure 3.13 Flow around a sphere or a long cylinder.
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where we have used the acceleration to be V 2/R, R being the radius of curvature in 
the assumed plane fl ow. If we assume that the effect of gravity is small compared 
to the acceleration term, this equation simplifi es to
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Since we will use this equation to make estimations of pressure changes normal to 
a streamline, we approximate ∂ ∂ =p n p n/ /Δ Δ  and arrive at the relationship
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Hence, we see that the pressure decreases as we move toward the center of the 
curved streamlines; this is experienced in a tornado where the pressure can be 
extremely low in the tornado’s “eye.” This reduced pressure is also used to measure 
the intensity of a hurricane; that is, lower the pressure in the hurricane’s center, 
larger the velocity at its outer edges. 

EXAMPLE 3.4
The wind in a hurricane reaches 200 km/h. Estimate the force of the wind on a 
window facing the wind in a high-rise building if the window measures 1 m by 
2 m. Use the density of the air to be 1.2 kg/m3.

Solution
Use Bernoulli’s equation to estimate the pressure on the window:

 p
V

= = ×
×

=ρ
2 2

2
1 2

200 1000 3600

2
1852.

( )/
N/m2  

where the velocity must have units of m/s. To check the units, use kg = N·s2/m. 
Assume the pressure to be essentially constant over the window so that the force 
is then

 F pA= = × × =1852 1 2 3704 N or 833 lb  

This force is large enough to break many windows, especially if they are not 
properly designed.
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EXAMPLE 3.5
A piezometer is used to measure the pressure in a pipe to be 20 cm of water. A 
pitot tube measures the total pressure to be 33 cm of water at the same general 
location. Estimate the velocity of the water in the pipe.

Solution
The velocity is found using Eq. (3.27):

 
V p p g h h= − = − = × × − =

2
2 2 9 81 0 33 0 20 12 1 2 1ρ

( ) ( ) . ( . . ) .660 m/s
 

where we used the pressure relationship p gh= ρ .

Quiz No. 1
 1. A velocity fi eld in a plane fl ow is given by V i j= +2yt x  m/s. The 

magnitude of the acceleration at the point (4, 2 m) at t = 3 s is

(A) 52.5 m/s2

(B) 48.5 m/s2

(C) 30.5 m/s2

(D) 24.5 m/s2

 2. A velocity fi eld in a plane fl ow is given by V i j= +2xy yt  m/s. The vorticity 
of the fl uid at the point (0, 4 m) at t = 3 s is

(A) −4k rad/s

(B) −3j rad/s

(C) −2k rad/s

(D) −3i rad/s

 3. The parabolic velocity distribution in a channel fl ow is given by u(y) = 
0.2(1 − y2) m/s, with y measured in centimeters. What is the acceleration of 
a fl uid particle at a location where y = 0.5 cm?

(A) 0

(B) 2 m/s2

(C) 4 m/s2

(D) 5 m/s2
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 4. The equation of the streamline that passes through the point (2, −1) if the 
velocity fi eld is given by V i j= +2 2xy y  m/s is

(A) x2 = 4y2

(B) x = −2y

(C) x2 = −4y

(D) x = 2y2

 5. A drinking fountain has a 2-mm-diameter outlet. If the water is to be 
laminar, what is the maximum speed that the water should have?

(A) 0.5 m/s

(B) 1 m/s

(C) 2 m/s

(D) 4 m/s

 6. Which of the following fl ows could be modeled as inviscid fl ows?

(a) Developed fl ow in a pipe

(b) Flow of water over a long weir

(c) Flow in a long, straight canal

(d) The fl ow of exhaust gases exiting a rocket

(e) Flow of blood in an artery

(f) Flow of air around a bullet

(g) Flow of air in a tornado

(A) d, e

(B) d, g

(C) b, e

(D) b, g

 7. Salt is being added to fresh water in a pipe at a certain location. In the 
vicinity of that location the term Dr/Dt is nonzero. Which term in the 
expression for Dr/Dt is nonzero if the x-axis is along the pipe axis? 
Assume uniform conditions.

(A) u y∂ ∂ρ /

(B) ρ∂ ∂u x/

(C) u x∂ ∂ρ /

(D) ρ∂ ∂u y/



64 Fluid Mechanics Demystifi ed

 8. A pitot probe measures 10 cm of water on a small airplane fl ying where the 
temperature is 20°C. The speed of the airplane is nearest

(A) 40 m/s

(B) 50 m/s

(C) 60 m/s

(D) 70 m/s

 9. The fl uid in the pipe is water and h = 10 cm of mercury. The velocity V is 
nearest

             

h

V

(A) 7 m/s 

(B) 8 m/s

(C) 5 m/s

(D) 4 m/s

 10. Select the false statement for Bernoulli’s equation

(A) It can be applied to an inertial coordinate system.

(B) It can be applied to an unsteady fl ow.

(C) It can be applied in an inviscid fl ow.

(D) It can be applied between two points along a streamline.

 11. Water fl ows through a long-sweep elbow on a 2-cm-diameter pipe at an 
average velocity of 20 m/s. Estimate the increase in pressure from the 
inside of the pipe to the outside of the pipe midway through the elbow if 
the radius of curvature of the elbow averages 12 cm at the midway section.

(A) 60 kPa

(B) 66.7 kPa

(C) 75 kPa

(D) 90 kPa
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Quiz No. 2
 1. Find the rate of change of the density in a stratifi ed fl ow where 

r = 1000(1− 0.2z) and the velocity is V = 10(z – z2)i. 

 2. A velocity fi eld is given in cylindrical coordinates as

 v vr r r
= −⎛

⎝⎜
⎞
⎠⎟ = − +⎛

⎝⎜
⎞
⎠⎟2

8
2

8
2 2

cos sinθ θm/s, θθ m/s, vz = 0  

  What are the three acceleration components at the point (3 m, 90°)?

 3. The traffi c in a large city is to be studied. Explain how it would be done 
using (a) the Lagrangian approach and (b) the Eulerian approach.

 4. Find the unit vector normal to the streamline at the point (2, 1) when t = 2 s 
if the velocity fi eld is given by V i j= +2 2xy y t m/s.

 5. A leaf is fl oating in a river seemingly quite slowly. It is timed to move 6 m 
in 40 s. If the river is about 1.2 m deep, determine if the placidly fl owing 
river is laminar or turbulent.

 6. Which of the following fl ows would defi nitely be modeled as a turbulent fl ow?

(a) Developed fl ow in a pipe

(b) Flow of water over a long weir

(c) Flow in a long, straight canal

(d) The fl ow of exhaust gases exiting a rocket

(e) Flow of blood in an artery

(f) Flow of air around a bullet

(g) Flow of air in a tornado

 7. Air fl ows over and parallel to a 10-m-long fl at plate at 2 m/s. How long is 
the laminar portion of the boundary layer if the air temperature is 30°C. 
Assume a high-fl uctuation level on a smooth rigid plate.
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 8. The pitot and piezometer probes read the total and static pressures as 
shown. Calculate the velocity V.

 9. Determine the velocity V in the pipe if water is fl owing and h = 20 cm of 
mercury.

 10. A car is travelling at 120 km/h. Approximate the force of the air on the 
20-cm-diameter fl at lens on the headlight. 

V Water

240 kPa112 kPa

h

V 4V



The Integral 
Equations

Many, if not most, of the quantities of interest in fl uid mechanics are integral quantities; 
they are found by integrating some property of interest over an area or a volume. Many 
times the property is essentially constant so the integration is easily performed but other 
times, the property varies over the area or volume, and the required integration may be 
quite diffi cult. Some of the integral quantities of interest are: the rate of fl ow through a 
pipe,  the kinetic energy in the wind approaching a wind machine, the power generated 
by the blade of a turbine, and the drag on an airfoil. There are quantities that are not 
integral in nature, such as the minimum pressure on a body or the point of separation on 
an airfoil; such quantities will be considered in Chap. 5.

To perform an integration over an area or a volume, it is necessary that the inte-
grand be known. The integrand must either be given or information must be avail-
able so that it can be approximated with an acceptable degree of accuracy. There are 
numerous integrands where acceptable approximations cannot be made requiring 
the solutions of differential equations to provide the required relationships; external 

CHAPTER 4
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fl ow calculations, such as the lift and drag on an airfoil, often fall into this category. 
In this chapter, only those problems that involve integral quantities with integrands 
that are given or that can be approximated will be considered. 

4.1 System-to-Control-Volume 
Transformation

The three basic laws that are of interest in fl uid mechanics are often referred to as 
the conservation of mass, energy, and momentum. The last two are more specifi -
cally called the fi rst law of thermodynamics and Newton’s second law. Each of 
these laws is expressed using a Lagrangian description of motion; they apply to a 
specifi ed mass of the fl uid. They are stated as follows:

Mass: The mass of a system remains constant.

Energy: The rate of heat transfer to a system minus the work rate done by 
a system equals the rate of change of the energy E of the system.

Momentum: The resultant force acting on a system equals the rate of 
momentum change of the system.

Each of these laws applies to a collection of fl uid particles and the density, specifi c 
energy, and velocity can vary from point to point in the volume of interest. Using 
the material derivative and integration over the volume, the laws are now expressed 
in mathematical terms:

Mass: 0 = ∫
D

Dt
d Vρ

sys

 

 (4.1)

Energy:              � �Q W
D

Dt
e d V− = ∫ ρ

sys
 (4.2)

Momentum: ∑ = ∫F V
D

Dt
d Vρ

sys
 (4.3)

where the dot over Q and W signifi es a time rate and e is the specifi c energy included 
in the parentheses of Eq. (1.33). It is very diffi cult to apply the above equations 
directly to a collection of fl uid particles as the fl uid moves along in a simple pipe 
fl ow as well as in a more complicated fl ow, such as fl ow through a turbine. So, let’s 
convert these integrals that are expressed using a Lagrangian description to inte-
grals expressed using a Eulerian description (see Sec. 3.1). This is a rather tedious 
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derivation but an important one. In this derivation, it is necessary to differentiate 
between two volumes: a control volume that, in this book is a fi xed volume in space, 
and a system that is a specifi ed collection of fl uid particles. Figure 4.1 illustrates the 
difference between these two volumes. It represents a general fi xed volume in space 
through which a fl uid is fl owing; the volumes are shown at time t and at a slightly 
later time t + Δt. Let’s select the energy E e d V= ∫ ρ

sys  
with which to demonstrate 

the material derivative. We then write, assuming Δt to be a small quantity,

DE

Dt

E t t E t

t

E t t E t

sys sys sys≅
+ −

=
+ + +

( ) ( )

( ) (

Δ
Δ

Δ3 2 ΔΔ
Δ

Δ Δ

t E t E t

t

E t t E t t E t

) ( ) ( )

( ) ( ) ( )

− −

=
+ + + − −

1 2

2 1 2 EE t

t

E t t E t t

t
1 3 1( ) ( ) ( )

Δ
Δ Δ

Δ
+

+ − +

 
(4.4)

where we have simply added and subtracted E t t1( )+ Δ  in the last line. Note that the 
fi rst ratio in the last line above refers to the control volume so that  

 

E t t E t t E t E t

t

dE

dt
2 1 2 1( ) ( ) ( ) ( )+ + + − −

≅
Δ Δ

Δ
c.v.    (4.5)

where an ordinary derivative is used since we are no longer following a specifi ed 
fl uid mass. Also, we have used “c.v.” to denote the control volume. The last ratio in 

Fixed control
volume

System
at time t

System at
time t + Δt

1

2

3

dV1

dV3

Fixed control
volume occupies 1 and

System at time t
occupies and

System at time t + Δt
occupies and

2

2

2

1

3

Figure 4.1 The system and the fi xed control volume.
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Eq. (4.4) results from fl uid fl owing into volume 3 and out of volume 1. Consider the 
differential volumes shown in Fig. 4.1 and displayed with more detail in Fig. 4.2. 
Note that the area A

1
 + A

3 
completely surrounds the control volume so that

 

E t t E t t e tdA e tdA
A

3 1 3
3

( ) ( ) ˆ ˆ+ − + = ⋅ + ⋅∫Δ Δ Δ Δρ ρn V n V 11
1A

e tdA

∫

∫= ⋅ρn̂ VΔ
c.s.

 
(4.6)

where “c.s.” is the control surface that surrounds the control volume. Substituting 
Eqs. (4.5) and (4.6) into Eq. (4.4) results in the Reynolds transport theorem, a system- 
to-control-volume transformation:

 
DE

Dt

d

dt
e d V e dAsys = + ⋅∫ ∫ρ ρ

c.v. c.s.
n̂ V  (4.7)

where, in general, e would represent the specifi c property of E. Note that we could have 
taken the limit as Δt → 0  to make the derivation more mathematically rigorous.

If we return to the energy equation of Eq. (4.2) we can now write it as

 

� �Q W
d

dt
e d V e dA− = + ⋅∫ ∫ρ ρ

c.v. c.s.
n̂ V

 
(4.8)

If we let e = 1 in Eq. (4.7) [see Eq. (4.1)], the conservation of mass results. It is

 
0 = + ⋅∫ ∫

d

dt
d V dAρ ρ

c.v. c.s.
n̂ V

 
(4.9)

And fi nally, if we replace e in Eq. (4.7) with the vector V [see Eq. (4.3)], Newton’s 
second law results:

 
∑ = + ⋅∫ ∫F V V n V

d

dt
d V dAρ ρ

c.v. c.s.

ˆ
 

(4.10)

VΔt VΔtdA1 dA3

dV1 = –n·VΔtdA1 dV3 =

n

n·VΔtdA3

n

Figure 4.2 Differential volume elements from Fig. 4.1.
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These three equations can be written in a slightly different form by recognizing 
that a fi xed control volume has been assumed. That means that the limits of the fi rst 
integral on the right-hand side of each equation are independent of time. Hence, the 
time derivative can be moved inside the integral if desired. Note that it would be 
written as a partial derivative should it be moved inside the integral since the inte-
grand depends, in general, on x, y, z, and t. For example, the momentum equation 
would take the form

 
∑ = + ⋅∫ ∫F V V n V

∂
∂t

d V dA( ) ˆρ ρ
c.v. c.s.

 
(4.11)

The following three sections will apply these integral forms of the basic laws to 
problems in which the integrands are given or in which they can be assumed. 

4.2 Continuity Equation
The most general relationship for the conservation of mass using the Eulerian 
description that focuses on a fi xed volume was developed in the preceding section 
as Eq. (4.9). Since the limits on the volume integral do not depend on time, this can 
be written as

 
0 = + ⋅∫ ∫

∂
∂
ρ ρ
t

d V dA
c.v. c.s.

n̂ V
 

(4.12)

If the fl ow of interest can be assumed to be a steady fl ow so that time does not enter 
the above equation, the equation simplifi es to

 
0 = ⋅∫ ρn̂ VdA

c.s.  
(4.13)

Those fl ows in which the density r is uniform over an area are of particular interest 
in our study of fl uids. Also, most applications have one entrance and one exit. For 
such a problem, the above equation can then be written as

 ρ ρ2 2 2 1 1 1A V A V=  (4.14)

where an over bar denotes an average over an area, i.e., V A VdA= ∫ . Note also that 
at an entrance we use n̂ V⋅ = −1 1V  since the unit vector points out of the volume, 
and the velocity is into the volume. But at an exit, n̂ V⋅ =2 2V  since the two vectors 
are in the same direction. 
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For incompressible fl ows in which the density does not change1 between the 
entrance and the exit, and the velocity is uniform over each area, the conservation 
of mass takes the simplifi ed form:

 A V A V2 2 1 1=  (4.15)

We refer Eqs. (4.12) to (4.15) as the continuity equation. These equations are used 
most often to relate the velocities between sections.

The quantity rAV is the mass fl ux and has units of kg/s. The quantity VA is the 
fl ow rate (or discharge) and has units of m3/s. The mass fl ux is usually used in a gas 
fl ow and the discharge in a liquid fl ow. They are defi ned by

 

�m AV

Q AV

=
=

ρ
 (4.16)

where V is the average velocity at a section of the fl ow.

EXAMPLE 4.1
Water fl ows in a 6-cm-diameter pipe with a fl ow rate of 0.02 m3/s. The pipe is 
reduced in diameter to 2.8 cm. Calculate the maximum velocity in the pipe. Also 
calculate the mass fl ux. Assume uniform velocity profi les.

Solution
The maximum velocity in the pipe will be where the diameter is the smallest. In 
the 2.8-cm diameter section we have

Q A V

V V

=

= × ∴ =
2 2

2
2 20 02 0 014 32 5. . .π m/s

The mass fl ux is 

�m Q= = × =ρ 1000 0 02 20. kg/s

EXAMPLE 4.2
Water fl ows into a volume that contains a sponge with a fl ow rate of 0.02 m3/s. It 
exits the volume through two tubes, one 2 cm in diameter, and the other with a 

1Not all incompressible fl ows have constant density. Atmospheric and oceanic fl ows are 
examples, as is salt water fl owing in a canal.
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mass fl ux of 10 kg/s. If the velocity out of the 2-cm-diameter tube is 15 m/s, 
determine the rate at which the mass is changing inside the volume.

Solution
The continuity equation (4.9) is used. It is written in the form

0 2 3 3 1= + + −
dm

dt
m A V Qvol � ρ ρ

where m d Vvol = ∫ ρ  and the two exits and entrance account for the other three 
terms. Expressing the derivative term as �mvol, the continuity equation becomes

� �m Q m A Vvol = − −

= × − − × ×

ρ ρ
π

1 2 3 3

1000 0 02 10 1000 0 0. . 11 15 5 292 × = . kg/s

The sponge is soaking up water at the rate of 5.29 kg/s. 

4.3 The Energy Equation
The fi rst law of thermodynamics, or simply, the energy equation, is of use whenever 
heat transfer or work is desired. If there is essentially no heat transfer and no exter-
nal work from a pump or some other device, the energy equation allows us to relate 
the pressure, the velocity, and the elevation. We will begin with the energy equation 
(4.8) in its general form: 

 � �Q W
d

dt
e d V e dA− = + ⋅∫ ∫ρ ρ

c.v. c.s.
n̂ V  (4.17)

Most applications allow a simplifi ed energy equation by assuming a steady, uniform 
fl ow with one entrance and one exit, so that

 
� �Q W e V A e V A− = −2 2 2 2 1 1 1 1ρ ρ  (4.18)

where we have used n̂ V⋅ = −V1  at the entrance. Using the continuity equation (4.14), 
this is written as

 
� � �Q W m e e− = −( )2 1  (4.19)
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The work rate term results from a force moving with a velocity: �W = ⋅F V. The 
force can be a pressure or a shear multiplied by an area. If the fl ow is in a conduit, 
e.g., a pipe or a channel, the walls do not move so there is no work done by the 
walls. If there is a moving belt, there could be an input of work due to the shear 
between the belt and the fl uid. The most common work rate terms result from the 
pressure forces at the entrance and the exit (pressure is assumed to be uniform over 
each area) and from any device located between the entrance and the exit. The work 
rate term is expressed as

 
� �W p A V p A V WS= − +2 2 2 1 1 1  (4.20)

where power output is considered positive and �WS  is the shaft power output from 
the control volume (a pump would provide a negative power and a turbine, a posi-
tive power output). Using the expression for e given in Eq. (1.33), Eq. (4.19) takes 
the form

 � � � �Q p A V p A V W m
V

gz u
V

gzS− + − = + + − −2 2 2 1 1 1
2
2

2 2
1
2

2 2 11 1−
⎛

⎝⎜
⎞

⎠⎟
�u  (4.21)

The heat transfer term and the internal energy terms form the losses in the fl ow 
(viscous effects result in heat transfer and/or an increase in internal energy). Divide 
Eq. (4.21) by �mg and simplify2:

 
− = + + − − − +
�

�
W

mg

V

g

p
z

p V

g
z hS

L
2
2

2

2
2

1

1

1
2

12 2γ γ
 (4.22)

where we have included the loss term as hL, called the head loss; it is 

 h
u u

g

Q

mgL =
−

+
� � �

�
2 1  (4.23)

The head loss term is often expressed in terms of a loss coeffi cient K:

 
h K

V

gL =
2

2
 (4.24)

     2We used �m A V A V= =ρ ρ2 2 2 1 1 1.
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where V is some characteristic velocity in the fl ow; if it is not obvious it will be 
specifi ed. Some loss coeffi cients are listed in Table 7.2; in this chapter they will be 
given.

The term h
L
 is called the head loss because it has the dimension of length. We 

also refer to V 2/2g as the velocity head, p/g   as the pressure head, and z as the head. 
The sum of these three terms is the total head. 

An incompressible fl ow occurs in many applications so that g
1
 = g

2
. Recall that g 

for water is 9810 N/m3.
The shaft-work term in Eq. (4.22) is typically due to either a pump or a turbine. 

If it is a pump, we can defi ne the pump head H
P
 as

 
H

W

mg

W

mgP
S P P=

−
=

�

�

�

�
η

 (4.25)

where �WP  is the power input to the pump and ηP  is the pump effi ciency. For a turbine 
the turbine head H

T
 is 

 H
W

mg

W

mgT
S T

T

= =
�

�

�

� η
 (4.26)

where �WT  is the power output of the turbine and ηT  is the turbine effi ciency. Power 
has units of watts or horsepower. 

If the fl ow is not uniform over the entrance and exit, an integration must be per-
formed to obtain the kinetic energy. The rate at which the kinetic energy crosses an 
area is [see Eqs. (4.17) and (1.33)]

 
Kinetic energy rate = × =∫ ∫

V
VdA V dA

2
3

2

1

2
ρ ρ  (4.27)

If the velocity distribution is known, the integration can be performed. A kinetic-
energy correction factor a is defi ned as

 
α = ∫V dA

V A

3

3

 (4.28)

The kinetic energy term can then be written as

 
1

2

1

2
3 3ρ ραV dA V A∫ =  (4.29)
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so that, for nonuniform fl ows, the energy equation takes the form

 
− = + + − − − +
�

�
W

mg

V

g
z

p V

g
z

p
hS

Lα
γ

α
γ2

2
2

2
2

2
1

1
2

1
1

12 2
 (4.30)

where V V1 2and  are the average velocities at sections 1 and 2, respectively. Equa-
tion (4.30) is used if the values for a are known; for parabolic profi les, a = 2 in a 
pipe and a = 1.5 between parallel plates. For turbulent fl ows (most fl ows in engi-
neering applications), α ≅ 1.

EXAMPLE 4.3
Water fl ows from a reservoir with an elevation of 30 m through a 5-cm-diameter 
pipe that has a 2-cm-diameter nozzle attached to the end, as shown. The loss 
coeffi cient for the entire pipe is given as K = 1.2. Estimate the fl ow rate of water 
through the pipe. Also, predict the pressure just upstream of the nozzle (neglect 
the losses through the nozzle). The nozzle is at an elevation of 10 m.

5-cm-dia
2cm

el. 30 m

Water

p

Solution
The energy equation is written in the form 

− = + + − − − +
�

�
W

mg

V

g
z

p V

g
z

p
K

V

g
S 2

2

2
2

2

1
2

1
1

1

2

2 2 2γ γ

where the pressure is zero at surface 1 and at the exit 2, the velocity is zero at the 
surface, and there is no shaft work (there is no pump or turbine). The loss coef-
fi cient would be based on the characteristic velocity V in the pipe, not the exit 
velocity V

2
. Use the continuity equation to relate the velocities:

V
A

A
V

d

d
V V= = =2

2
2
2

2 2 2

4

25
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The energy equation provides

0
2

10 30 1 2
4

25 2
19 52

2 2

2
2

2= + − + × ⎛
⎝⎜

⎞
⎠⎟

∴ =
V

g

V

g
V. . m//s

The pressure just before the nozzle is found by applying the energy equation 
across the nozzle assuming no losses (Bernoulli’s equation could also be used):

− = + + − − −
�

�
W

mg

V

g

p
z

V

g

p
zS 2

2
2

2

2

2 2γ γ

where area 2 is at the exit and p and V are upstream of the nozzle. The energy 
equation gives

0
19 5

2 9 81

4

25

19 5

2 9 8

2
2

2

2 2

=
×

+ + − ⎛
⎝⎜

⎞
⎠⎟ ×

−
.

.

.

.

p
z

p

γ 99810

185 300 185 3

−

∴ =

z

p Pa or kPa.

EXAMPLE 4.4
An energy conscious couple decides to dam up the creek fl owing next to their 
cabin and estimates that a head of 4 m can be established above the exit to a turbine 
they bought on eBay. The creek is estimated to have a fl ow rate of 0.8 m3/s. What 
is the maximum power output of the turbine assuming no losses and a velocity at 
the turbine’s exit of 3.6 m/s?

Solution
The energy equation is applied as follows:

− = + + − − − +
�

�
W

mg

V

g

p
z

V

g

p
z hT

L
2
2

2
2

1
2

1
12 2γ γ

It is only the head of the water above the turbine that provides the power; 
the exiting velocity subtracts from the power. There results, using �m Q= =ρ
1000 0 8 800× =. kg/s,

� � �W mgz m
V

T = −

= × × − × =

1
2
2

2

2

800 9 81 4 800
3 6

2
26 200.

.
J/s or 26.2 kW
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Let’s demonstrate that the units on �mgz1  are J/s. The units on �mgz1 are 
kg

s

m

s
m

2
× ×  =

⋅
× =

⋅
=

kg m

s

m

s

N m

s
J/s

2
 where, from  F =  ma, we see that 

N = kg m/s2⋅ . If the proper units are included on the items in our equations, the 
units will come out as expected, i.e., the units on �WT  must be J/s. 

4.4 The Momentum Equation 
When a force is involved in a calculation, it is often necessary to apply Newton’s 
second law, or simply, the momentum equation, to the problem of interest. For some 
general volume, using the Eulerian description of motion, the momentum equation 
was presented in Eq. (4.10) in its most general form for a fi xed control volume as

 
∑ = + ⋅∫ ∫F

V
V n V

∂
∂

( )
ˆ

ρ ρ
t

d V dA
c.v. c.s.

 (4.31)

When applying this equation to a control volume, we must be careful to include all 
forces acting on the control volume, so it is very important to sketch the control 
volume and place the forces on the sketch. The control volume takes the place of 
the free-body diagram utilized in mechanics courses. 

Most often, steady, uniform fl ows with one entrance and one outlet are encoun-
tered. For such fl ows, Eq. (4.31) reduces to

 ∑ = −F V Vρ ρ2 2 2 2 1 1 1 1A V A V  (4.32)

Using continuity �m A V A V= =ρ ρ2 2 2 1 1 1, the momentum equation takes the simplifi ed 
form

 ∑ = −F V V�m( )2 1  (4.33)

This is the form most often used when a force is involved in a calculation. It is a 
vector equation that contains the following three scalar equations (using rectangu-
lar coordinates):

 

∑ = −
∑ = −

∑ = −

F m V V

F m V V

F m V V

x x x

y y y

z z

�

�

�

( )

( )

(

2 1

2 1

2 1zz )

 (4.34)



CHAPTER 4 The Integral Equations 79

If the profi les at the entrance and exit are not uniform, Eq. (4.31) must be used 
and the integration performed or, if the  momentum-correction factor b is known, it 
can be used. It is found from

 
V dA V A

A

2 2∫ = β  (4.35)

The momentum equation for a steady fl ow with one entrance and one outlet then 
takes the form

 ∑ = −F V V�m( )β β2 2 1 1  (4.36)

where V
1
 and V

2
 represent the average velocity vectors over the two areas. For 

parabolic profi les, b  = 1.33 for a pipe and b  = 1.2 for parallel plates. For turbulent 
fl ows (most fl ows in engineering applications), b ≅ 1. 

One of the more important applications of the momentum equation is on the 
defl ectors (or vanes) of pumps, turbines, or compressors. The applications involve 
both stationary defl ectors and moving defl ectors. The following assumptions are 
made for both:

• The frictional force between the fl uid and the defl ector is negligible.

• The pressure is constant as the fl uid moves over the defl ector.

• The body force is assumed to be negligible.

• The effect of the lateral spreading of the fl uid stream is neglected.

A sketch is made of a stationary defl ector in Fig. 4.3. Bernoulli’s equation predicts 
that the fl uid velocity will not change (V V2 1= ) as the fl uid moves over the defl ector. 

V2

V1

Rx

Ry

a

Liquid
jet

Deflector

x

y
Control
volume

Figure 4.3 A stationary defl ector.
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Since the pressure does not change, there is no friction, it is a steady fl ow, and the 
body forces are neglected. The component momentum equations appear as follows:

 
− = − = −

= =
R m V V mV

R mV
x

y

� �

� �
( cos ) (cos )

sin
2 1 1

2

1α α
α mmV1 sinα

 (4.37)

Given the necessary information, the force components can be calculated.  
The analysis of a moving defl ector is more complicated. Is it a single defl ector (a water 

scoop to slow a high-speed train), or is it a series of defl ectors as in a turbine? First, 
let us consider a single defl ector moving with speed V

B
, as shown in Fig. 4.4. The 

reference frame is attached to the defl ector so the fl ow is steady from such a refer-
ence frame3. The defl ector sees the velocity of the approaching fl uid as the relative 
velocity V

r1
 and it is this relative velocity that Bernoulli’s equation predicts will 

remain constant over the defl ector, i.e., V
r2

 = V
r1

. The velocity of the fl uid exiting 
the fi xed nozzle is V

1
. The momentum equation then provides

 
− = − −

= −
R m V V

R m V V
x r B

y r B

�

�
( )(cos )

( )sin
1

1

1α
α

 (4.38)

V1

Rx

Ry

This fluid does not
change momentum

x

y

VB Δt

VB Vr1

Vr1 = V1 – VB

Vr2 = V1 – VB

Vr2

VB

V2

Exiting velocity
polygon

Fixed jet
a

Figure 4.4 A single moving defl ector.

3If the defl ector is observed from the fi xed jet, the defl ector moves away from the jet and 
the fl ow is not a steady fl ow. It is steady if the fl ow is observed from the defl ector.
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where �mr  is that part of the exiting fl uid that has its momentum changed. As the 
defl ector moves away from the nozzle, the fl uid represented by the length V tBΔ  
does not experience a change in momentum. The mass fl ux of fl uid that experiences 
a momentum change is

 �m AV A V Vr r B= = −ρ ρ1 1( )  (4.39)

which provides us with the relative mass fl ux used in the expressions for the force 
components. 

For a series of vanes, the nozzles are typically oriented such that the fl uid enters 
the vanes from the side at an angle b

1
 and leaves the vanes at an angle b

2
, as shown 

in Fig. 4.5. The vanes are designed so that the relative inlet velocity V
r1

 enters the 
vanes tangent to a vane (the relative velocity always leaves tangent to the vane) as 
shown in Fig. 4.6. It is the relative speed that remains constant in magnitude as the 
fl uid moves over the vane, i.e., V

r2
 = V

r1
. We also note that all of the fl uid exiting the 

fi xed jet has its momentum changed. So, the expression to determine the x-component 
of the force is

 − = −R m V Vx x x
� ( )2 1     (4.40)

Fixed jet

V1

V2

b2

b1

a2

a1

Time-average
position of
exiting jet

VB

Figure 4.5 A series of vanes.
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It is this x-component of the force that allows the power to be calculated; the 
y-component does no work and hence does not contribute to the power. The power 
is found from

 
�W NR Vx B=  (4.41)

where N is the number of jets in the device and we have observed that the force R
x
 

moves with velocity V
B
.

EXAMPLE 4.5
A 10-cm-diameter hose maintained at a pressure of 1600 kPa provides water 
from a tanker to a fi re. There is a nozzle on the end of the hose that reduces the 
diameter to 2.5 cm. Estimate the force that the water exerts on the nozzle. The 
losses can be neglected in a short nozzle.

Solution
A sketch of the water contained in the nozzle is important so that the control 
volume is carefully identifi ed. It is shown. Note that p

2
 = 0 and we expect 

V1

V2

V2

VB
VB

Vr2

Vr1 V1

Ry

Rx

(a) (b) (c)

a1

a2

b1

b1

b2

b2

Figure 4.6 (a) Average position of the jet, (b) the entrance velocity polygon, 
and (c) the exit velocity polygon.

that the force F
N
 of the nozzle on the water acts to the left. The velocities are 

needed upstream and at the exit of the nozzle. Continuity provides

A V A V V V V2 2 1 1 2

2

2 1 1

10

2 5
16= ∴ = =

.

p1A1

V2V1 FN
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The energy equation requires

V p
g z

V p
g z h

V V
L
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2

2

2
1
2

1
1

2 1
2

1
2

2 2
16

2 2

16
+ + = + + + = +

ρ ρ
000000

1000

3 54 56 681 2∴ = =V V. .m/s and m/s

The momentum equation then gives 

p A F m V V A V V V A VN1 1 2 1 1 1 2 1 1 1
215

1600

− = − = − =� ( ) ( )ρ ρ
0000 0 05 15 1000 0 05 3 54 112 2 2× × − = × × × × ∴ =π π. . .F FN N 0090 N

The force of the water on the nozzle would be equal and opposite to F
N
.

EXAMPLE 4.6
A steam turbine contains eight 4-cm-diameter nozzles each accelerating steam to 
200 m/s, as shown. The turbine blades are moving at 80 m/s and the density of 
the steam is 2.2 kg/m3. Calculate the maximum power output.

Fixed jet

V1 = 200 m/s

VB

a2 = 30°

b1 = 30°

a1

Solution
The angle a

1
 is determined from the velocity polygon of Fig. 4.6b. For the x- and 

y-components, using V
1
 = 200 m/s and V

 B
 = 80 m/s, we have

200 30

200 30 80
1 1

1 1

sin sin

cos cos

° =
° = +

V

V
r

r

α
α
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There are two unknowns in the above two equations: Vr1 1and α .  A simultaneous 
solution provides 

Vr1 1136 7 47 0= = °. .m/s and α

Neglecting losses allows V Vr r2 1= = 136.7 m/s so the velocity polygon at the exit 
(see Fig.4.6c) provides

V

V
2 2

2 2

136 7 30

80 136 7 30

sin . sin

cos . cos

β
β

= °
= − °

These two equations are solved to give 

V2 278 39 119 3= = °. .m/s and β

Observe that the exiting velocity polygon appears as displayed.

VB

V2

Vr2

a2 b2

The force acting on the blades due to one nozzle is

− = −

= × × × −

F m V Vx x
� ( )

. . ( . cos .
2 1

22 2 0 02 200 78 39 60π 77 200 30 117° − ° ∴ =cos ) F N

The power output is then 

�W N F VB= × × = × × =8 11 7 80 74 880. W or 100.4 hp

EXAMPLE 4.7
The relatively rapid fl ow of water in a horizontal rectangular channel can sud-
denly “jump” to a higher level (an obstruction downstream may be the cause). 
This is called a hydraulic jump. For the situation shown, calculate the higher 
depth downstream. Assume uniform fl ow.
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Solution
For a short section of water, the frictional force on the walls can be neglected. 
The forces acting on the water are F

1
 acting to the right and F

2
 acting to the left; 

they are

F h A F h A
y

1 1 1 2 2 29810 0 20 0 40 785= = × × = = =γ γ γ. . w w and 22
22

× y w

Applying the momentum equation gives

∑ = − = −

− × =

F m V V A V V V

y
x
� ( ) ( )2 1 1 1 2 1

2
2785 4905 10

ρ
w w 000 0 4 4 42× × −. ( )w V

The width w divides out of this equation but there are two unknowns, y V2 2and .  
The continuity equation relates these two variables:

A V A V

y V V
y

2 2 1 1

2 2 2
2

0 4 4
1 6

=

= × × ∴ =w w .
.

Substitute this into the momentum equation and obtain

785 4905 1600
1 6

42
2

2

− = −
⎛
⎝⎜

⎞
⎠⎟

y
y

.

This equation is a cubic but with a little ingenuity it’s a quadratic. Let’s factor: 

7 4 10 4 10
1600

1 6 4
1600

2 5
2

2 2
2

2( ) ( ) ( . )
.

− + = − =y y
y

y
y22

24 10( )− y

The factor ( )4 10 2− y  divides out and a quadratic equation results:

y y2
2

20 4 1 306 0+ − =. .

It has two roots. The one of interest is

y2 0 96= . m  

y1 = 40 cm

y2

4 m/s
V2

Water
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This rather interesting effect is analogous to the shock wave that occurs in a 
supersonic gas fl ow. It is nature’s way of moving from something traveling quite 
fast to something moving relatively slow while maintaining continuity and 
momentum. The energy that is lost when making this sudden change through the 
hydraulic jump can be found by using the energy equation.

    Quiz No. 1
 1. The time derivative can be moved inside the volume integral in the system-

to-control-volume transformation because

(A) The integrand is time independent

(B) The limits of integration are time independent

(C) The integral is over space coordinates

(D) The volume is allowed to deform

 2. Air at 25°C and 240 kPa fl ows in a 10-cm-diameter pipe at 40 m/s. The 
mass fl ux is nearest

(A) 0.94 kg/s

(B) 1.14 kg/s

(C) 1.25 kg/s

(D) 1.67 kg/s

 3. Water fl ows in a 2- by 4-cm rectangular duct at 16 m/s. The duct undergoes 
a transition to a 6-cm-diameter pipe. Calculate the velocity in the pipe.

(A) 2.76 m/s

(B) 3.14 m/s

(C) 3.95 m/s

(D) 4.53 m/s

 4. A balloon is being fi lled with water at an instant when the diameter is 50 cm. 
If the fl ow rate into the balloon is 0.01 m3/s, the rate of increase in the 
diameter is nearest

(A) 2.1 cm/s

(B) 2.6 cm/s

(C) 3.2 cm/s

(D) 3.8 cm/s
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 5. A sponge is contained in a volume that has one 4-cm-diameter inlet A
1
 into 

which water fl ows and two 2-cm-diameter outlets, A
2
 and A

3
. The sponge is 

to have dm/dt = 0. Find V
1
 if Q

2
 = 0.002 m3/s and �m3 = 2.5 kg/s.

(A) 3.58 m/s

(B) 3.94 m/s

(C) 4.95 m/s

(D) 5.53 m/s

 6. The energy equation − = + + − − − +
�

�
W

mg

V

g

p
z

p V

g
z hS

L
2
2

2

2
2

1

1

1
2

12 2γ γ
 does not

  assume which of the following

(A) Steady fl ow

(B) Incompressible fl ow

(C) Uniform fl ow

(D) Viscous effects

 7. Water enters a horizontal nozzle with diameter d
1
 = 8 cm at 10 m/s and 

exits to the atmosphere through a 4-cm-diameter outlet. The pressure 
upstream of the nozzle is nearest

(A) 600 kPa

(B) 650 kPa

(C) 700 kPa

(D) 750 kPa

 8. Water is transported from one reservoir with surface elevation of 135 m to 
a lower reservoir with surface elevation of 25 m through a 24-cm-diameter 
pipe. Estimate the fl ow rate through the pipe if the loss coeffi cient between 
the two surfaces is 20.

(A) 0.23 m3/s

(B) 0.34 m3/s

(C) 0.47 m3/s

(D) 0.52 m3/s
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 9. A turbine extracts energy from water fl owing through a 10-cm-diameter 
pipe at a pressure of 800 kPa with an average velocity of 10 m/s. If the 
turbine is 90 percent effi cient, how much energy can be produced if the 
water is emitted from the turbine to the atmosphere through a 20-cm-
diameter pipe?

(A) 65 kW

(B) 70 kW

(C) 75 kW

(D) 80 kW

 10. A 10-cm-diameter hose delivers 0.04 m3/s of water through a 4-cm-
diameter nozzle. The force of the water on the nozzle is nearest

(A) 1065 N

(B) 1370 N

(C) 1975 N

(D) 2780 N

 11. A hydraulic jump (a sudden jump for no apparent reason) can occur in a 
rectangular channel with no apparent cause. The momentum equation allows 
the height downstream to be calculated if the upstream height and velocity 
are known. Neglect any frictional force on the bottom and sidewalls and 
determine y

2 
in the rectangular channel if V

1
 = 10 m/s and y

1
 = 50 cm.

y1 y2
V1

V2

Water

(A) 2.75 m

(B) 2.95 m

(C) 3.15 m

(D) 3.35 m

 12. A 6-cm-diameter horizontal stationary water jet having a velocity of 40 m/s 
strikes a vertical plate. The force needed to hold the plate if it moves away 
from the jet at 20 m/s is nearest

(A) 1365 N

(B) 1270 N

(C) 1130 N

(D) 1080 N
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 13. The blades of Fig. 4.5 defl ect a jet of water having V
1
 = 40 m/s. Determine 

the required blade angle a
 1
 if b

1
 = 30°, a

2
 = 45°, and V

B
 = 20 m/s.

(A) 53.8° 

(B) 56.4°
(C) 58.2°
(D) 63.4°

 14. If the jet in Prob. 13 is 2 cm in diameter, estimate the force of the jet 
on the blade.

(A) 387 N

(B) 404 N

(C) 487 N

(D) 521 N

Quiz No. 2
 1. Water fl ows in a 2- by 4-cm rectangular duct at 16 m/s. The duct undergoes 

a transition to a 6-cm-diameter pipe. Calculate the velocity in the pipe.

 2. Air fl ows in a 20-cm-diameter duct at 120°C and 120 kPa with a mass fl ux 
of 5 kg/s. The circular duct converts to a 20-cm square duct in which the 
temperature and pressure are 140°C and 140 kPa, respectively. Determine 
the velocity in the square duct.

 3. Air at 40°C and 250 kPa is fl owing in a 32-cm-diameter pipe at 10 m/s. The 
pipe changes diameter to 20 cm and the density of the air changes to 3.5 kg/m3. 
Calculate the velocity in the smaller diameter pipe.

 4. Atmospheric air fl ows over the fl at plate as shown. Viscosity makes the air stick 
to the surface creating a thin boundary layer. Estimate the mass fl ux �m  of the air 
across the surface that is 10 cm above the 120-cm-wide plate if u y y( ) .= 800

40 m/s
40 m/sm

.

y

u(y)

 5. A sponge is contained in a volume that has one 4-cm-diameter inlet A
1
 

into which water fl ows and two outlets, A
2
 and A

3
. Determine dm/dt of the 

sponge if V
1
 = 5 m/s, Q

2
 = 0.002 m3/s, and �m3 = 2.5 kg/s.



90 Fluid Mechanics Demystifi ed

 6. Water fl ows from a reservoir with an elevation of 25 m out to a 12-cm-
diameter pipe that has a 4-cm-diameter nozzle attached to the end. The loss 
coeffi cient for the entire pipe is given as K = 2. Estimate the fl ow rate of 
water through the pipe. The nozzle is at an elevation of 10 m.

 7. A dam is proposed on a remote stream that measures approximately 25-cm 
deep by 350-cm wide with an average velocity of 2.2 m/s. If the dam can 
be constructed so that the free surface above a turbine is 10 m, estimate the 
maximum power output of an 88 percent effi cient turbine.

 8. An 85 percent effi cient pump is used to increase the pressure in water from 
120 to 800 kPa in a 10-cm-diameter pipe. What is the required horsepower 
of the pump for a fl ow rate of 20 L/s?

 9. Air enters a compressor at 25°C and 10 kPa with negligible velocity. It 
exits through a 2-cm-diameter pipe at 400 kPa and 160°C with a velocity of 
200 m/s. Determine the heat transfer if the power required is 18 kW.

 10. A turbine is located in a 24-cm-diameter pipe. A piezometer tube upstream 
of a turbine measures the same pressure as a pitot tube downstream of the 
turbine. If the upstream velocity is 20 m/s and the turbine is 90 percent 
effi cient, what is the turbine output?

 11. A nozzle with exit diameter d is attached to a hose of diameter 3d with 
upstream pressure of 200 kPa. The nozzle changes the direction of the 
water fl ow from the hose through an angle of 90°. Calculate the magnitude 
of the force of the water on the nozzle if d = 1 cm.

 12. A hydraulic jump (a sudden jump for no apparent reason) can occur in a 
rectangular channel with no apparent cause. The continuity and momentum 
equations allow the variables to be related. Neglect any frictional force on the 
bottom and sidewalls and determine V

1 
in the rectangular channel if V

2
 = V

1
/4.

 13. A 4-cm-diameter horizontal stationary water jet having a velocity of 50 m/s 
strikes a cone having an included angle at the apex of 60°. The water leaves 
the cone symmetrically. Determine the force needed to hold the cone if it 
moves into the jet at 20 m/s.

 14. The blades of Fig. 4.6 defl ect a 2-cm-diameter jet of water having V
1
 = 40 m/s. 

Determine the blade angle a
1
 and the power produced by the jet assuming 

no losses if b
1
 = 20°, a

2
 = 50°, and V

B
 = 15 m/s.



The Differential 
Equations

This chapter may be omitted in an introductory course. The derivations in subse-
quent chapters will either not require these differential equations or there will be 
two methods to derive the equations: one using differential elements and one utiliz-
ing the differential equations. 

In Chap. 4 problems were solved using integrals for which the integrands were 
known or could be approximated. Differential equations are needed in order to 
solve for those quantities in the integrands that are not known, such as the velocity 
distribution in a pipe or the velocity and pressure distributions on and around an 
airfoil. The differential equations may also contain information of interest, such as 
a point of separation of a fl uid from a surface. 
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5.1 The Boundary-Value Problem
To solve a partial differential equation for the dependent variable, certain con-
ditions are required, i.e., the dependent variable must be specifi ed at certain 
values of the independent variables. If the independent variables are space 
coordinates (such as the velocity at the wall of a pipe), the conditions are called 
boundary conditions. If the independent variable is time, the conditions are 
called initial conditions. The general problem is usually referred to as a boundary-
value problem. 

Boundary conditions typically result from one or more of the following:

• The no-slip condition in a viscous fl ow. Viscosity causes any fl uid, be it 
a gas or a liquid, to stick to the boundary. Most often the boundary is not 
moving.

• The normal component of the velocity in an inviscid fl ow. In an inviscid 
fl ow where the viscosity is neglected, the velocity vector is tangent to the 
boundary at the boundary, providing the boundary is not porous.

• The pressure at a free surface. For problems involving a free surface, a 
pressure condition is known at the free surface. 

For an unsteady fl ow, initial conditions are required, e.g., the initial velocity and 
pressure must be specifi ed at some time, usually at t = 0.

The differential equations in this chapter will be derived using rectangular coordi-
nates. It may be easier to solve problems using cylindrical or spherical coordinates, so 
the differential equations using those two coordinate systems will be presented in 
Table 5.1.

The differential energy equation will not be derived in this book. It would be 
needed if there are temperature differences on the boundaries or if viscous effects 
are so large that temperature gradients are developed in the fl ow. A course in heat 
transfer would include such effects.

5.2 The Differential Continuity Equation
To derive the differential continuity equation, the infi nitesimal element of Fig. 5.1 
is needed. It is a small control volume into and from which the fl uid fl ows. It is 
shown in the  xy-plane with depth dz. Let us assume that the fl ow is only in the xy-
plane so that no fl uid fl ows in the z-direction. Since mass could be changing inside 
the element, the mass that fl ows into the element minus that which fl ows out must 
equal the change in mass inside the element. This is expressed as
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Table 5.1 The Differential Continuity, Momentum Equations, and Stresses for 
Incompressible Flows in Cylindrical and Spherical Coordinates

Continuity
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Table 5.1 The Differential Continuity, Momentum Equations, and Stresses for 
Incompressible Flows in Cylindrical and Spherical Coordinates (Continued)
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(5.1)

where the products ru and rv are allowed to change across the element.1 Simplify-
ing the above, recognizing that the elemental control volume is fi xed, results in
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Figure 5.1 Infi nitesimal control volume.

1The product could have been included as ρ ∂ ρ
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side of the element but the above simpler expression is equivalent.
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Differentiate the products and include the variation in the z-direction. Then the dif-
ferential continuity equation can be put in the form
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(5.3)

The fi rst four terms form the material derivative [see Eq. (3.11)], so Eq. (5.3) becomes
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(5.4)

providing the most general form of the differential continuity equation expressed 
using rectangular coordinates. 

The differential continuity equation is often written using the vector operator
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(5.5)

so that Eq. (5.4) takes the form
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Dt

ρ ρ+ Æ·V = 0
 

(5.6)

where the velocity vector is V i j k= + +u v w . The scalar Æ·V is called the diver-
gence of the velocity vector. 

For an incompressible fl ow, the density of a fl uid particle remains constant as it 
travels through a fl ow fi eld, that is,
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(5.7)

so it is not necessary that the density be constant. If the density is constant, as it 
often is, then each term in Eq. (5.7) is zero. For an incompressible fl ow, Eqs. (5.4) 
and (5.6) also demand that

 

∂
∂

∂
∂

∂
∂

u

x y z
+ + =

v w
0
  

or  Æ·V = 0
 

(5.8)

The differential continuity equation for an incompressible fl ow is presented in 
cylindrical and spherical coordinates in Table 5.1.
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EXAMPLE 5.1
Air fl ows with a uniform velocity in a pipe with the velocities measured along 
the centerline at 40-cm increments as shown. If the density at point 2 is 1.2 kg/m3, 
estimate the density gradient at point 2.

64 m/s 60 m/s 52 m/s

1 2 3

Solution
The continuity equation (5.3) is used since the density is changing. It is simplifi ed 
as follows:
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Central differences2 are used to approximate the velocity gradient ∂ ∂u x/  at point 
2 since information at three points is given:

∂
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The best estimate of the density gradient, using the information given, is then
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ρ ρ
x u
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x
= − = − − =
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60
15 0 3 4.

( ) . kg/m

5.3 The Navier-Stokes Equations
The differential continuity equation derived in Sec. 5.2 contains the three velocity 
components as the dependent variables for an incompressible fl ow. If there is a fl ow 
of interest in which the velocity fi eld and pressure fi eld are not known, such as the 
fl ow around a turbine blade or over a weir, the differential momentum equation 

2A forward difference would give ∂ ∂u x/ /≅ − = −( ) . .52 60 0 40 20  A backward difference 
would provide ∂ ∂u x/ /≅ − = −( ) . .60 64 0 40 10  The central difference is the best linear 
approximation.
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provides three additional equations since it is a vector equation containing three 
component equations. The four unknowns are then u, v, w, and p when using a 
rectangular coordinate system. The four equations provide us with the necessary 
equations and initial and boundary conditions allow a tractable problem. The prob-
lems of the turbine blade and the weir are quite diffi cult to solve and their solutions 
will not be attempted in this book. Our focus will be solving problems with simple 
geometries.

Now we will derive the differential momentum equation, a rather challenging task. 
First, stresses exist on the faces of an infi nitesimal, rectangular fl uid element, as 
shown in Fig. 5.2 for the  xy-plane. Similar stress components act in the z-direction. 
The normal stresses are designated with s and the shear stresses with t. There are 
nine stress components: σ σ σ τ τ τ τ τxx yy zz xy yx xz zx yz, , , , , , , ,  and τ zy .  If moments are 
taken about the x-axis, the y-axis, and the z-axis, respectively, they would show that 

 
τ τ τ τ τ τyx xy zx xz zy yz= = =

 (5.9)

So, there are six stress components that must be related to the pressure and velocity 
components. Such relationships are called constitutive equations; they are equa-
tions that are not derived but are found using observations in the laboratory.  

y

x

dx

dx

dx

dy

dy

dy

∂syy

∂sxx

∂tyx

∂txy

∂ y

∂y

∂x

∂x

txy+

sxx +

sxx

syy

txy

tyx

syy +

tyx +

Figure 5.2 Rectangular stress components on a fl uid element.
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Next, apply Newton’s second law to the element of Fig. 5.2, assuming no shear 
stresses act in the z-direction (we’ll simply add those in later) and that gravity acts 
in the z-direction only:
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(5.10)

These are simplifi ed to 
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If the z-direction components are included, the differential equations become

 

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

σ τ τ
ρ

σ τ τ

xx xy xz

yy xy y

x y z

Du

Dt

y x

+ + =

+ + zz

zz xz yz

z

D

Dt

z x y
g

D

Dt

∂
∂
∂

∂
∂

∂
∂

=

+ + − =

ρ

σ τ τ
ρ ρ

v

w

 

(5.12)

assuming the gravity term ρgdxdydz  acts in the negative  z- direction.
In many fl ows, the viscous effects that lead to the shear stresses can be neglected and 

the normal stresses are the negative of the pressure. For such inviscid fl ows, Eq. (5.12) 
takes the form
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(5.13)

In vector form [see Eq. (5.5)], they become the famous Euler’s equation,

 
ρ D
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V
= − Æ p g− ρ k̂

 
(5.14)
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which is applicable to inviscid fl ows. For a constant-density, steady fl ow, Eq. (5.14) 
can be integrated along a streamline to provide Bernoulli’s equation [Eq. (3.27)].

If viscosity signifi cantly effects the fl ow, Eq. (5.12) must be used. Constitutive 
equations3 relate the stresses to the velocity and pressure fi elds. For a Newtonian4, 
isotropic5 fl uid, they have been observed to be  
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(5.15)

For most gases, Stokes hypothesis can be used: λ μ= −2 3/ .  If the above normal 
stresses are added, there results
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(5.16)

showing that the pressure is the negative average of the three normal stresses in 
most gases, including air, and in all liquids in which ∇∇⋅ =V 0.

If Eq. (5.15) is substituted into Eq. (5.12) using λ μ= −2 3/ , there results
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(5.17)

3The constitutive equations for cylindrical and spherical coordinates are displayed in 
Table 5.1.

4A Newtonian fl uid has a linear stress-strain rate relationship.
5An isotropic fl uid has properties that are independent of direction at a point.
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where gravity acts in the negative z-direction and a homogeneous fl uid6 has been 
assumed so that, e.g., ∂ ∂μ / x = 0.  

Finally, if an incompressible fl ow is assumed so that Æ ⋅ =V 0 , the Navier-Stokes 
equations result:
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(5.18)

where the z-direction is vertical. If we introduce the scalar operator called the 
Laplacian, defi ned by
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(5.19)

and review the steps leading from Eq. (5.13) to Eq. (5.14), the Navier-Stokes equa-
tions can be written in vector form as

 
ρ D

Dt

V
= − Æ p + +μ ρ∇2V g

 
(5.20)

The Navier-Stokes equations expressed in cylindrical and spherical coordinates are 
presented in Table 5.1.

The three scalar Navier-Stokes equations and the continuity equation constitute 
the four equations that can be used to fi nd the four variables u, v, w, and p provided 
there are appropriate initial and boundary conditions. The equations are nonlinear 
due to the acceleration terms, such as u∂u/∂x on the left-hand side; consequently, 
the solution to these equation may not be unique. For example, the fl ow between 
two rotating cylinders can be solved using the Navier-Stokes equations to be a rela-
tively simple fl ow with circular streamlines; it could also be a fl ow with streamlines 
that are like a spring wound around the cylinders as a torus; and, there are even 

6A homogeneous fl uid has properties that are independent of position.
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more complex fl ows that are also solutions to the Navier-Stokes equations, all sat-
isfying the identical boundary conditions. 

The Navier-Stokes equations can be solved with relative ease for some simple 
geometries. But, the equations cannot be solved for a turbulent fl ow even for the sim-
plest of examples; a turbulent fl ow is highly unsteady and three-dimensional and thus 
requires that the three velocity components be specifi ed at all points in a region of 
interest at some initial time, say t = 0. Such information would be nearly impossible 
to obtain, even for the simplest geometry. Consequently, the solutions of turbulent 
fl ows are left to the experimentalist and are not attempted by solving the equations.

EXAMPLE 5.2
Water fl ows from a reservoir in between two closely aligned parallel plates, as 
shown. Write the simplifi ed equations needed to fi nd the steady-state velocity 
and pressure distributions between the two plates. Neglect any z-variation of the 
distributions and any gravity effects. Do not neglect v(x, y).

y

x

Solution
The continuity equation is simplifi ed, for the incompressible water fl ow, to
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neglecting pressure variation in the y-direction since the plates are assumed to be 
a relatively small distance apart. So, the three equations that contain the three 
variables u p, , andv  are
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To fi nd a solution to these equations for the three variables, it would be necessary 
to use the no-slip conditions on the two plates and assumed boundary conditions 
at the entrance, which would include u(0,  y) and v(0,  y). Even for this rather 
simple geometry, the solution to this entrance-fl ow problem appears, and is, quite 
diffi cult. A numerical solution could be attempted.

EXAMPLE 5.3
Integrate Euler’s equation [Eq. (5.14)] along a streamline as shown for a steady, 
constant-density fl ow and show that Bernoulli’s equation (3.25) results.

Streamline
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(k)s = sin q

k

g

z

q

Solution
First, sketch a general streamline and show the selected coordinates normal to 
and along the streamline so that the velocity vector can be written as V ŝ, as we 
did in Fig. 3.10. First, express DV/dt in these coordinates:

D

Dt t
V

V

s n
V

V

s
V

sn

V V s
V

V
s

s
= + + = +

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

( ˆ)
ˆ

ˆ2
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where ∂ ∂ŝ / s  is nonzero since ŝ  can change direction from point to point on the 
streamline; it is a vector quantity in the n̂  direction. Applying Euler’s equation 
along a streamline (in the s-direction) allows us to write

ρ ρV
V

s

p

s
g

z

s

∂
∂

∂
∂

∂
∂

= − −

where we write ( ˆ ) .k s z s= ∂ ∂/  Partial derivatives are necessary because quantities 
can vary in the normal direction. The above equation is then written as

∂
∂s

V
p gzρ ρ

2

2
0+ +

⎛
⎝⎜

⎞
⎠⎟

=

provided the density r is constant. This means that along a streamline,

V p
gz

2

2
+ + =

ρ
const

This is Bernoulli’s equation; it requires the same conditions as it did when it was 
derived in Chap. 3.

5.4 The Differential Energy Equation
Most problems in an introductory fl uid mechanics course involve isothermal fl uid 
fl ows in which temperature gradients do not exist. So, the differential energy equa-
tion is not of interest. The study of fl ows in which there are temperature gradients 
is included in a course on heat transfer. For completeness, the differential energy 
equation is presented here without derivation. In general, it is

 
ρ Dh

Dt
K T

Dp

Dt
= ∇ +2

 
(5.21)

where K is the thermal conductivity. For an incompressible ideal gas fl ow it 
becomes

 
ρc

DT

Dt
K Tp = ∇2

 
(5.22)
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For a liquid fl ow it takes the form

 

DT

Dt
T= ∇α 2

 
(5.23)

where a is the thermal diffusivity defi ned byα ρ= K cp/ .  

         Quiz No. 1
 1. The x-component of the velocity in a certain plane fl ow depends only on 

y by the relationship u(y) = Ay. Determine the y-component v(x, y) of the 
velocity if v(x, 0) = 0.

(A) 0

(B) Ax

(C) Ay

(D) Axy

 2. If u = Const in a plane fl ow, what can be said about v(x, y)?

(A) 0

(B) f x( )

(C) f y( )

(D) f x y( , )

 3. If, in a plane fl ow, the two velocity components are given by u x y( , ) =
8 2 2( )x y+  and v( , )x y xy= 8 . What is Dr/Dt at (1, 2) m if at that point 
r = 2 kg/m3?

(A) −24 kg/m3/s

(B) −32 kg/m3/s

(C) −48 kg/m3/s

(D) −64 kg/m3/s

 4. If u(x, y) = 4
2

2 2
+

+
x

x y
 in a plane incompressible fl ow, what is v(x, y) if  

v(x, 0) = 0?

(A) 2 2 2y x y/( )+
(B) − +2 2 2x x y/( )

(C) − +2 2 2y x y/( )

(D) 2 2 2x x y/( )+
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 5. The velocity component vq = −(25 + 1/r2)cosq in a plane incompressible 
fl ow. Find v vr rr r( , ) ( , ) .θ if 0 0=

(A) 25 1 1 2( )sin− /r θ
(B) ( )sin25 1 2− /r θ
(C) − −25 1 1 2( )sin/r θ
(D) − −( )sin25 1 2/r θ

 6. Simplify the appropriate Navier-Stokes equation for the fl ow between 
parallel plates assuming u = u(y) and gravity in the z-direction. The 
streamlines are assumed to be parallel to the plates so that v = w = 0.

(A) ∂ ∂ ∂ ∂p x u y/ /= μ 2 2

(B) ∂ ∂ ∂ ∂p y u x/ /= μ 2 2

(C) ∂ ∂ ∂ ∂p y u y/ /= μ 2 2

(D) ∂ ∂ ∂ ∂p x u x/ /= μ 2 2

         Quiz No. 2
 1. A compressible fl ow of a gas occurs in a pipeline. Assume uniform fl ow 

with the  x-direction along the pipe axis and state the simplifi ed continuity 
equation.

 2. Calculate the density gradient in Example 5.1 if (a) a forward difference 
was used, and (b) if a backward difference was used.

 3. The x-component of the velocity vector is measured at three locations 
8 mm apart on the centerline of a symmetrical contraction. At points A, 
B, and C the measurements produce 8.2, 9.4, and 11.1 m/s, respectively. 
Estimate the y-component of the velocity 2 mm above point B in this 
steady, plane, incompressible fl ow.

 4. A plane incompressible fl ow empties radially (no q  component) into a small 
circular drain. How must the radial component of velocity vary with radius 
as demanded by continuity?

 5. The velocity component vq = −25(1 + 1/r 2)sin q + 50/r 2  in a plane 
incompressible fl ow. Find v

r
 (r, q ) if v

r
 (r, 90°) = 0.

 6. Simplify the Navier-Stokes equation for fl ow in a pipe assuming v vz z r= ( )  
and gravity in the z-direction. The streamlines are assumed to be parallel to 
the pipe wall so that v vθ = =r 0.  



Dimensional
Analysis and 

Similitude

Many problems of interest in fl uid mechanics cannot be solved using the integral 
and/or differential equations. Wind motions around a football stadium, the air fl ow 
around the defl ector on a semitruck, the wave motion around a pier or a ship, and 
air fl ow around aircraft are all examples of problems which are studied in the labo-
ratory with the use of models. A laboratory study with the use of models is very 
expensive, however, and to minimize the cost, dimensionless parameters are used. 
In fact, such parameters are also used in numerical studies for the same reason.

Once an analysis is done on a model in the laboratory and all quantities of inter-
est are measured, it is necessary to predict those same quantities on the prototype, 
such as the power generated by a large wind machine from measurements on a 
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much smaller model. Similitude is the study that allows us to predict the quantities 
to be expected on a prototype from measurements on a model. This will be done 
after our study of dimensional analysis that guides the model study.

6.1 Dimensional Analysis
Dimensionless parameters are obtained using a method called dimensional analysis. 
It is based on the idea of dimensional homogeneity: all terms in an equation must 
have the same dimensions. By simply using this idea, we can minimize the number 
of parameters needed in an experimental or analytical analysis, as will be shown. 
Any equation can be expressed in terms of dimensionless parameters simply by 
dividing each term by one of the other terms. For example, consider Bernoulli’s 
equation,

 
V p

gz
V p

gz2
2

2
2

1
2

1
12 2

+ + = + +
ρ ρ

 (6.1)

Now, divide both sides by gz
2
. The equation can then be written as

 

V

gz

p

z

V

gz

p

z

z

z
2
2

2

2

2

1
2

1

1

1

1

22
1

2
1+ + = + +

⎛

⎝⎜
⎞

⎠⎟γ γ
 

(6.2)

Note the dimensionless parameters, V gz p z2/ and /γ .
Let’s use an example to demonstrate the usefulness of dimensional analysis. 

Suppose the drag force is desired on an object with a spherical front that is shaped 
as shown in Fig. 6.1. A study could be performed, the drag force measured for a 

FD

R

L

V

Figure 6.1 Flow around an object.
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particular radius R and length L in a fl uid with velocity V, viscosity m, and density 
r. Gravity is expected to not infl uence the force. This dependence of the drag force 
on the other variables would be written as

 F f R L VD = ( , , , , )μ ρ  (6.3)

To present the results of an experimental study, the drag force could be plotted as a 
function of V for various values of the radius R holding all other variables fi xed. 
Then a second plot could show the drag force for various values of L holding all 
other variables fi xed, and so forth. The plots may resemble those of Fig. 6.2. To 
vary the viscosity holding the density fi xed and then the density holding the viscos-
ity fi xed, would require a variety of fl uids leading to a very complicated study, and 
perhaps an impossible study. 

The actual relationship that would relate the drag force to the other variables could 
be expressed as a set of dimensionless parameters, much like those of Eq. (6.2), as 

 

F

V R
f

VR R

L
D

ρ
ρ

μ2 2
=

⎛
⎝⎜

⎞
⎠⎟

,
 

(6.4)

(The procedure to do this will be presented next.) The results of a study using the 
above relationship would be much more organized than the study suggested by the 
curves of Fig. 6.2. An experimental study would require only several different mod-
els, each with different R/L ratios, and only one fl uid, either air or water. Varying 
the velocity of the fl uid approaching the model, a rather simple task, could vary the 
other two dimensionless parameters. A plot of F V RD / )(ρ 2 2  versus ρ μVR/  for the 
several values of R/L would then provide the results of the study.

FD FD

V V

R1
R2

R3

L3
L2

L1

(a) (b)

Figure 6.2 Drag force versus velocity: (a) L, m, r  fi xed; (b) R, m, r  fi xed.
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Before we present the details of forming the dimensionless parameters of Eq. (6.4), 
let’s review the dimensions on quantities of interest in fl uid mechanics. Many quanti-
ties have obvious dimensions but for some, the dimensions are not so obvious. There 
are only three basic dimensions, since Newton’s second law can be used to relate the 
basic dimensions. Using F, M, L, and T as the dimensions on force, mass, length, and 
time, we see that F = ma demands that the dimensions are related by

 
F M

L

T
=

2
 

(6.5)

We choose to select the M-L-T system1 and use Eq. (6.5) to relate F to M, L, and T. 
If temperature is needed, as with the fl ow of a compressible gas, an equation of 
state, such as

 p RT= ρ  (6.6)

could be expressed dimensionally as

 [ ] [ ]RT p
F

L

L

M

ML T

L

L

M

L

T
= = × = × =/

/ρ
2

3 2

2

3 2

2
  (6.7)

where the brackets mean “the dimensions of.” Note that the product RT  does not 
introduce additional dimensions. 

Table 6.1 has been included to aid in selecting the proper dimensions for quanti-
ties of interest. It will simplify the creation of the dimensionless parameters. The 
dimensions are displayed for the M-L-T system only, since that will be what is used 
in the solution to the problems in this chapter. The same results would be obtained 
using the F-L-T system, should that system be selected.

The Buckingham p theorem is used to create the dimensionless parameters, given 
a functional relationship such as that of Eq. (6.3). Write the primary variable of 
interest as a general function, such as

 x f x x x xn1 2 2 4= ( , , , ),…  (6.8)

where n is the total number of variables. If m is the number of basic dimensions, 
usually 3, the Buckingham p theorem demands that (n − m) dimensionless groups 
of variables, the p terms, are related by

 π π π π1 1 2= −f n m( , , ),3 …       (6.9)

1The F-L-T system could have been used. It’s simply our choice to use the M-L-T system.
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The p term p
1
 is selected to contain the dependent variable [it would be F

D
 of Eq. (6.3)] 

and the remaining p terms contain the independent variables. It should be noted that 
a functional relationship cannot contain a particular dimension in only one variable; 
for example, in the relationship v = f d t( , , )ρ , the density r cannot occur since it 
is the only variable that contains the dimension M, and M would not have the pos-
sibility of canceling out to form a dimensionless p term. 

Table 6.1 Symbols and Dimensions of Quantities of 
Interest Using the M-L-T System

Quantity Symbol Dimensions

Length l L

Mass m M

Time t T

Velocity V L /T

Acceleration a L /T 2

Angular velocity Ω T −1

Force F F

Gravity g L /T 2

Flow rate Q L3/T

Mass fl ux �m M/T

Pressure p M/LT 2

Stress t M/LT 2

Density r M/L3

Specifi c weight g M/L2T 2

Work W ML2/T 2

Viscosity m M/LT

Kinematic viscosity n L2/T

Power �W ML2/T 3

Heat fl ux
�Q ML2/T 3

Surface tension s M/T 2

Bulk modulus B M/LT 2



112 Fluid Mechanics Demystifi ed

The steps that are followed when applying the Buckingham p theorem are:

 1. Write the dependent variable as a function of the (n – 1) independent 
variables. This step requires knowledge of the phenomenon being studied. 
All variables that infl uence the dependent variable must be included and 
all variables that do not infl uence the dependent variable should not be 
included. In most problems, this relationship will be given.

 2. Identify the m repeating variables that are combined with the remaining 
variables to form the p terms. The m variables must include all the basic 
dimensions present in the n variables of the functional relationship, but they 
must not form a dimensionless p term by themselves. Note that an angle is 
dimensionless, so it is not a candidate to be a repeating variable.

 3. Combine each of the (n – m) variables with the repeating variables to form 
the p terms.

 4. Write the p term containing the dependent variable as a function of the 
remaining p terms.

Step 3 is carried out by either inspection or by an algebraic procedure. The method 
of inspection will be used in an example. To demonstrate the algebraic procedure, 
let’s form a p term of the variables V, R, r, and m. This is written as

 π ρ μ= V Ra b c d  (6.10)

In terms of dimensions, this is

 
M L T

L

T
L

M

L

M

LT

a

b

c d

0 0 0
3

= ⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟  

(6.11)

Equating exponents on each of the basic dimensions provides the system of equations:

 

M c d

L a b c d

T a d

:

:

:

0

0 3

0

= +
= + − −
= − −  

(6.12)

The solution is

 c d a d b d= − = − = −  (6.13)

The p term is then written as

 π μ
ρ

=
⎛
⎝⎜

⎞
⎠⎟VR

d

 (6.14)
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This p term is dimensionless regardless of the value of d. If we desire V to be in the 
denominator, select d = 1; if we desire V to be in the numerator, select d = −1. Select 
d = −1 so that

 
π ρ

μ
=

VR

 
(6.15)

Suppose that only one p term results from an analysis. That p term would then 
be equal to a constant which could be determined by a single experiment. 

Finally, consider a very general functional relationship between a pressure 
change Δ p, a length l, a velocity V, gravity g, viscosity m, a density r, the speed of 
sound c, the surface tension s, and an angular velocity Ω. All of these variables 
may not infl uence a particular problem, but it is interesting to observe the fi nal 
relationship of dimensionless terms. Dimensional analysis, using V, l, and r as 
repeating variables provides the relationship

 

Δ Ωp

V
f

V

lg

Vl V

c

lV l

Vρ
ρ
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ρ
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2 2
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⎞
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, , , ,
 

(6.16)

Each term that appears in this relationship is an important parameter in certain fl ow 
situations. The dimensionless term with its common name is listed as follows:

 

Δp

V

V

lg

ρ 2
=

=

Eu

Fr

Euler number

Re

Froude number

Reynold
ρ
μ
Vl

= ss number

Mach number
V

c
lV

=

=

M

We
ρ

σ

2

St

Weber number

Strouha
Ωl

V
= ll number

   

(6.17)

Not all of the above numbers would be of interest in a particular fl ow; it is highly 
unlikely that both compressibility effects and surface tension would infl uence the 
same fl ow. These are, however, the primary dimensionless parameters in our study 
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of fl uid mechanics. The Euler number is of interest in most fl ows, the Froude num-
ber in fl ows with free surfaces in which gravity is signifi cant (e.g., wave motion), 
the Reynolds number in fl ows in which viscous effects are important, the Mach 
number in compressible fl ows, the Weber number in fl ows affected by surface ten-
sion (e.g., sprays with droplets), and the Strouhal number in fl ows in which rotation 
or a periodic motion plays a role. Each of these numbers, with the exception of the 
Weber number (surface tension effects are of little engineering importance), will 
appear in fl ows studied in subsequent chapters. Note: The Froude number is often 
defi ned as V 2/ lg; this would not infl uence the solution to problems.

EXAMPLE 6.1
The pressure drop Δ p over a length L of pipe is assumed to depend on the aver-
age velocity V, the pipe’s diameter D, the average height e of the roughness elements 
of the pipe wall, the fl uid density r, and the fl uid viscosity m. Write a relationship 
between the pressure drop and the other variables.

Solution
First, select the repeating variables. Do not select Δ p since that is the dependent 
variable. Select only one D, L, and e since they all have the dimensions of length. 
Select the variables that are thought2 to most infl uence the pressure drop: V, D, 
and r. Now, list the dimensions on each variable (refer to Table 6.1)

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

Δp
M

LT
L L V

L

T
D L

e L
M

L

= = = =

= =

2

3
ρ μ ==

M

LT

First, combine Δ p, V, D, and m into a p term. Since only Δ p and r have M as a 
dimension, they must occur as a ratio Δ p/r. That places T in the denominator so 
that V must be in the numerator so the T ’s cancel out. Finally, check out the L’s: 
there is L2 in the numerator so D2 must be in the denominator providing

π
ρ1 2 2

=
Δp

V D

2This is often debatable. Either D or L could be selected, whichever is considered to be 
most infl uential.
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The second p term is found by combining L with the three repeating variables 
V, D, and r. Since both L and D have the dimension of length, the second p term is

π 2 =
L

D

The third p term results from combining e with the repeating variables. It has 
the dimension of length so the third p term is

π3 =
e

D

The last p term is found by combining m with V, D, and r. Both m and r con-
tain the dimension M demanding that they form the ratio r/m. This puts T in the 
numerator demanding that V goes in the numerator. This puts L in the denomina-
tor so that D must appear in the numerator. The last p term is then 

π ρ
μ4 =
VD

The fi nal expression relates the p terms as π π π π1 2 3= f ( , , )4  or, using the 
variables,

Δp

V D
f

L

D

e

D

VD

ρ
ρ

μ2 2
=

⎛
⎝⎜

⎞
⎠⎟

, ,

If L had been chosen as a repeating variable, it would simply change places with 
D since it has the same dimension.

EXAMPLE 6.2
The speed V of a weight when it hits the fl oor is assumed to depend on gravity g,
the height h from which it was dropped, and the density r of the weight. Use 
dimensional analysis and write a relationship between the variables. 

Solution
The dimensions of each variable are listed as 

[ ] [ ] [ ] [ ]V
L

T
g

L

T
h L

M

L
= = = =

2 3
ρ
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Since M occurs in only one variable, that variable r cannot be included in the 
relationship. The remaining three terms are combined to form a single p term; it 
is formed by observing that T occurs in only two of the variables, thus V 2 is in 
the numerator and g is in the denominator. The length dimension is then canceled 
by placing h in the denominator. The single p term is

π1

2

=
V

gh

Since this p term depends on all other p terms and there are none, it must be at 
most a constant. Hence, we conclude that

V C gh=

A simple experiment would show that C = 2. We see that dimensional analysis rules 
out the possibility that the speed of free fall, neglecting viscous effects (e.g., drag), 
depends on the density of the material (or the weight).

6.2 Similitude
After the dimensionless parameters have been identifi ed and a study on a model has 
been accomplished in a laboratory, similitude allows us to predict the behavior of a 
prototype from the measurements made on the model. The measurements on the 
model of a ship in a towing basin or on the model of an aircraft in a wind tunnel are 
used to predict the performance of the ship or the aircraft.

The application of similitude is based on three types of similarity. First, a model 
must look like the prototype, that is, the length ratio must be constant between cor-
responding points on the model and prototype. For example, if the ratio of the lengths 
of the model and prototype is l, then every other length ratio is also l. Hence, the area 
ratio would be l2 and the volume ratio l3. This is geometric similarity.

The second is dynamic similarity: all force ratios acting on corresponding mass 
elements in the model fl ow and the prototype fl ow are the same. This results by 
equating the appropriate dimensionless numbers of Eq. (6.17). If viscous effects are 
important, the Reynolds numbers are equated; if compressibility is signifi cant, 
Mach numbers are equated; if gravity infl uences the fl ows, Froude numbers are 
equated; if an angular velocity infl uences the fl ow, the Strouhal numbers are 
equated; and, if surface tension affects the fl ow, the Weber numbers are equated. All 
of these numbers can be shown to be ratios of forces so equating the numbers in a 
particular fl ow is equivalent to equating the force ratios in that fl ow.
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The third type of similarity is kinematic similarity: the velocity ratio is the same 
between corresponding points in the fl ow around the model and the prototype. 

Assuming complete similarity between model and prototype, quantities of interest 
can now be predicted. For example, if a drag force is measured on fl ow around a model 
in which viscous effects play an important role, the ratio of the forces [see Eq. (6.18)] 
would be
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(6.18)

The velocity ratio would be found by equating the Reynolds numbers:
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If the length ratio, the scale, is given and the same fl uid is used in model and 
prototype ( r

m
= r

p
 and m

m
= m

p
), the force acting on the prototype can be found. 

It would be
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(6.20)

showing that, if the Reynolds number governs the model study and the same fl uid 
is used in the model and prototype, the force on the model is the same as the force 
of the prototype. Note that the velocity in the model study is the velocity in the 
prototype multiplied by the length ratio so that the model velocity could be quite 
large.

If the Froude number governed the study, we would have
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(6.21)

The drag force on the prototype, with g
m

= g
p
, would then be
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(6.22)

This is the situation for the model study of a ship. The Reynolds number is not used 
even though the viscous drag force acting on the ship cannot be neglected. We 
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cannot satisfy both the Reynolds number and the Froude number in a study if the 
same fl uid is used for the model study as exists in the prototype fl ow; the model 
study of a ship always uses water as the fl uid. To account for the viscous drag, the 
results of the model study based on the Froude number are adapted using industrial 
modifi ers not included in an introductory fl uids course.

EXAMPLE 6.3
A clever design of the front of a ship is to be tested in a water basin. A drag of 
12.2 N is measured on the 1:20 scale model when towed at a speed of 3.6 m/s. 
Determine the corresponding speed of the prototype ship and the drag to be 
expected.

Solution
The Froude number guides the model study of a ship since gravity effects (wave 
motions) are more signifi cant than the viscous effects. Consequently, 

Fr Fr orp m
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p p
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m m

V

l g

V

l g
= =

2 2

Since gravity does not vary signifi cantly on the earth, there results

V V
l

lp m

p

m

= = × =3 6 20 16 1. . m/s

To fi nd the drag on the prototype, the drag ratio is equated to the gravity force 
ratio (the inertial force ratio could be used but not the viscous force ratio since 
viscous forces have been ignored):
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( ) ( )
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.
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where we used r
m

= r
p
 since salt water and fresh water have nearly the same 

density. The above results would be modifi ed based on established factors to 
account for the viscous drag on the ship. 

EXAMPLE 6.4
A large pump delivering 1.2 m3/s of water with a pressure rise of 400 kPa is 
needed for a particular hydroelectric power plant. A proposed design change is 
tested on a smaller 1:4 scale pump. Estimate the fl ow rate and pressure rise that 
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would be expected in the model study. If the power needed to operate the model 
pump is measured to be 8000 kW, what power would be expected to operate the 
prototype pump?

Solution
For this internal fl ow problem, Reynolds number would be equated:

Re Re or orp m

p p

p

m m

m

p

m

m

p

V d V d V

V

d

d
= = =

ν ν

assuming ν νp m≅  for the water in the model and prototype. The ratio of fl ow 
rates is
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The power ratio is found by using power as force times velocity; this provides
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This is an unexpected result. When using the Reynolds number to guide a model 
study, the power measured on the model exceeds the power needed to operate the 
prototype since the pressures are so much larger on the model. Note that in this 
example the Euler number would be used to provide the model pressure rise as

Δ
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Δ Δ
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2

2

2

400 422 6400= kPa

For this reason and the observation that the velocity is much larger on the model, 
model studies are not common for situations (e.g., fl ow around an automobile) in 
which the Reynolds number is the guiding parameter.

EXAMPLE 6.5
The pressure rise from free stream to a certain location on the surface of the 
model of a rocket is measured to be 22 kPa at an air speed of 1200 km/h. The 
wind tunnel is maintained at 90 kPa absolute and 15°C. What would be the speed 
and pressure rise on a rocket prototype at an elevation of 15 km?
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Solution
The Mach number governs the model study. Thus,

M Mm p
m

m

p

p
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V

kRT

V

kRT
= = =

Using the temperature from Table C.3, the velocity is

V V
T

Tp m

p

m

= = =1200
216 7

288
1041

.
km/h

A pressure force is Δ ΔpA pl≈ 2 so that the ratio to the inertial force of Eq. (6.18) 
is the Euler number, Δp V/ρ 2. Equating the Euler numbers gives the pressure rise as
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         Quiz No. 1
 1. If the F-L-T system is used, the dimensions on density are:

(A) FT L/ 2

(B) FT L2 2/

(C) FT L/ 4

(D) FT L2 4/

 2. Combine the angular velocity w, viscosity m, diameter d, and density r into 
a single dimensionless group, a p term.

(A) ωρ μb/

(B) ωρ μb4/  

(C) ω μρb2/  

(D) ω ρ μ2 b/
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 3. What variable could not infl uence the velocity if it is proposed that the velocity 
depends on a diameter, a length, gravity, rotational speed, and viscosity?

(A) Gravity

(B) Rotational speed

(C) Viscosity

(D) Diameter

 4. It is proposed that the velocity V issuing from a hole in the side of an open 
tank depends on the density r of the fl uid, the distance H from the surface, 
and gravity g. What expression relates the variables?

(A) V C gH=
(B) V gH= ρ
(C) V gH= /ρ
(D) V C gH= ρ

 5. Add viscosity to the variables in Prob. 4. Rework the problem.

(A) V gH f gH/ /= ( )ρ μ3

(B) V gH f gH/ /= ( )ρ μ3        

(C) V gH f gH/ /ρ ρ μ= ( )3          

(D) V gH f gH/ /ρ μ ρ= ( )3

 6. The lift F
L
on an airfoil is related to its velocity V, its length L, its chord 

length c, its angle of attack a, and the density r of the air. Viscous effects 
are assumed negligible. Relate the lift to the other variables.

(A) F Vc f c LL / /ρ α2 = ( , )       

(B) F Vc f c L c LL / / /ρ α= ( , )        

(C) F V c f c L LL / / /ρ α2 = ( , )           

(D) F V c f c LL / /ρ α2 2 = ( , )

 7. A new design is proposed for an automobile. It is suggested that a 1:5 
scale model study be done to access the proposed design for a speed of 
90 km/h. What speed should be selected for the model study, based on the 
appropriate parameter?

(A) 500 km/h

(B) 450 km/h

(C) 325 km/h

(D) 270 km/h
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 8. A proposed pier design is studied in a water channel to simulate forces due 
to hurricanes. Using a 1:10 scale model, what velocity should be selected in 
the model study to simulate a water speed of 12 m/s?

(A) 3.79 m/s

(B) 4.28 m/s

(C) 5.91 m/s

(D) 6.70 m/s

 9. The force on a weir is to be predicted by studying the fl ow of water over 
a 1:10 scale model. If 1.8 m3/s is expected over the weir, what fl ow rate 
should be used in the model study? 

(A) 362 m3/s

(B) 489 m3/s

(C) 569 m3/s

(D) 674 m3/s

 10. What force should be expected on the weir of Prob. 9 if 20 N is measured 
on the model?

(A) 15 kN

(B) 20 kN

(C) 25 kN

(D) 30 kN

         Quiz No. 2
 1. If the F-L-T system is used, what are the dimensions on viscosity?

 2. Combine power �W,  diameter d, velocity V, and pressure rise Δp  into a 
single dimensionless group, a p term.

 3. The speed V of a weight when it hits the fl oor is assumed to depend on 
gravity g, the height h from where it was dropped, and the density r of 
the weight. Use dimensional analysis and write a relationship between the 
variables.

 4. An object falls freely in a viscous fl uid. Relate the terminal velocity V to 
its width w, its length l, gravity g, and the fl uid density r and viscosity m. 
Select w, r, and m as repeating variables.
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 5. The pressure drop Δ p over a horizontal section of pipe of diameter d 
depends on the average velocity V, the viscosity m, the fl uid density r, the 
average height e of the surface roughness elements, and the length L of the 
pipe section. Write an expression that relates the pressure drop to the other 
variables. Select d, V, and r as repeating variables.

 6. The drag force F
D
 on a sphere depends on the sphere’s diameter d and 

velocity V, the fl uid’s viscosity m and density r, and gravity g. Write an 
expression for the drag force.

 7. A model of a golf ball is to be studied to determine the effects of the 
dimples. A sphere 10 times larger than an actual golf ball is used in the 
wind tunnel study. What speed should be selected for the model to simulate 
a prototype speed of 50 m/s?

 8. A towing force of 15 N is measured on a 1:40 scale model of a ship in a 
water channel. What velocity should be used to simulate a prototype speed 
of 10 m/s? What would be the predicted force on the ship at that speed?

 9. A 1:20 scale model of an aircraft is studied in a 20°C supersonic wind 
tunnel at sea level. If a lift of 200 N at a speed of 250 m/s is measured in 
the wind tunnel, what velocity and lift does that simulate for the prototype? 
Assume the prototype is at 4000 m.
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Internal Flows 

The material in this chapter is focused on the infl uence of viscosity on the fl ows inter-
nal to boundaries, such as fl ow in a pipe or between rotating cylinders. The next 
chapter will focus on fl ows that are external to a boundary, such as an airfoil. The 
parameter that is of primary interest in an internal fl ow is the Reynolds number, Re = 
VL / n, where L is the primary characteristic length (e.g., the diameter of a pipe) in the 
problem of interest and V is usually the average velocity in a fl ow. We will consider 
internal fl ows in pipes, between parallel plates and rotating cylinders, and in open 
channels. If the Reynolds number is relatively low, the fl ow is laminar (see Sec. 3.2); 
if it is relatively high, it is turbulent. For pipe fl ows, the fl ow is assumed to be laminar 
if Re < 2000; for fl ow between wide parallel plates, it is laminar if Re < 1500; for fl ow 
between rotating concentric cylinders, it is laminar and fl ows in a circular motion 
below Re < 1700; and in the open channels of interest, it is assumed to be turbulent. 

CHAPTER 7

7.1 Entrance Flow
The fl ows mentioned above refer to developed fl ows, fl ows in which the velocity 
profi les do not change in the streamwise direction. In the region near a geometry 
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change, such as an elbow, a valve, or near an entrance, the velocity profi le changes 
in the fl ow direction. Let’s consider the changes in the entrance region for a laminar 
fl ow in a pipe or between parallel plates. The entrance length L

E
 is shown in Fig. 7.1. 

The velocity profi le very near the entrance is essentially uniform, the viscous wall 
layer grows until it permeates the entire cross section over the inviscid core length 
L

i
; the profi le continues to develop into a developed fl ow at the end of the profi le 

development region. 
For a laminar fl ow in a pipe, with a uniform velocity profi le at the entrance, 

 
L

D
E = 0 065. Re   Re =

VD

ν
 (7.1)

where V is the average velocity and D is the diameter. The inviscid core is about 
half of the entrance length.1 It should be mentioned that laminar fl ows in pipes have 
been observed at Reynolds numbers as high as 40 000 in extremely controlled fl ows 
in smooth pipes in a building free of vibrations; for a conventional pipe with a 
rough wall we use 2000 as the limit2 for a laminar fl ow. 

For fl ow between wide parallel plates, with a uniform profi le at the entrance,

 

L

h

VhE = =0 04. Re Re
ν  

(7.2)

where h is the distance between the plates and V is the average velocity. A laminar 
fl ow cannot exist for Re > 7700; a value of 1500 is used as the limit for fl ow in a 
conventional channel.

The entrance region for a developed turbulent fl ow is displayed in Fig. 7.2. The 
velocity profi le is developed at the length L

d
 but the characteristics of the turbulence 

LE (entrance length) 

Li Profile development length

u(x, y) u(y)

Inviscid core

Viscous wall layer

Figure 7.1 The laminar-fl ow entrance region in a pipe or between parallel plates.

1Some texts may suggest that the inviscid core makes up the entire entrance region, an 
assumption that is not true.

2Some texts suggest 2300. This difference does not signifi cantly infl uence design consid-
erations.
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in the fl ow require the additional length. For large Reynolds numbers exceeding 105 
in a pipe, we use

 

L

D

L

D

L

D
i d E≅ ≅ ≅10 40 120

 
(7.3)

For a fl ow with Re = 4000 the lengths are possibly fi ve times those listed in Eq. (7.3), 
due to the initial laminar development followed by the development of turbulence. 
(Detailed results have not been reported for fl ows in which Re < 105.) 

The pressure variation is shown in Fig. 7.3. The initial transition to turbulence from 
the wall of the pipe is noted in the fi gure. The pressure variation for the laminar 

LE (entrance length)

Li Profile development length

u(x, y)

Inviscid core

Wall layer

Ld

Developed
turbulent flow

u(y) = umax � �
1/n

10 > n > 5r0

y

Figure 7.2 The turbulent-fl ow entrance region in a pipe.

Transition near Ld
(for Re about 10000)

Transition near Li

Transition near the origin
(for Re > 300000)

Laminar flow

p

x

Figure 7.3 Pressure variation in a pipe for both laminar and turbulent fl ows.
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fl ow is higher in the entrance region than in the fully-developed region due to the 
larger wall shear and the increasing momentum fl ux.

7.2 Laminar Flow in a Pipe
Steady, developed laminar fl ow in a pipe will be derived applying Newton’s second 
law to the element of Fig. 7.4 or using the appropriate Navier-Stokes equation of 
Chap. 5. Either derivation can be used. 

THE ELEMENTAL APPROACH
The element of fl uid shown in Fig.7.4 can be considered a control volume into and 
from which the fl uid fl ows or it can be considered a mass of fl uid at a particular 
moment. Considering it to be an instantaneous mass of fl uid that is not accelerating 
in this steady, developed fl ow, Newton’s second law takes the form

 ∑ = − + − + =F p r p dp r r dx r dxx 0 2 02 2 2or π π τ π γ π θ( ) sin   (7.4)

where τ  is the shear on the wall of the element and γ  is the specifi c weight of the 
fl uid. This simplifi es to

 
τ γ= − +

r d

dx
p h

2
( )

 
(7.5)

u(r)

r
0

D

dx

dh

ppr2

γpr2dx

(p + dp)pr2

t2prdx

dx

q

Figure 7.4 Steady, developed fl ow in a pipe. 
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using dh dx= − sinθ  with h measured in the vertical direction. Note that this equa-
tion can be applied to either a laminar or a turbulent fl ow. For a laminar fl ow, the 
shear stress t is related to the velocity gradient3 by Eq. (1.13):

 
− = − +μ γdu

dr

r d

dx
p h

2
( )

 
(7.6)

Because we assume a developed fl ow (no change of the velocity profi le in the fl ow 
direction), the left-hand side of the equation is a function of r only, so d dx p h/ ( )+ γ  
must be at most a constant (it cannot depend on r since there is no radial accelera-
tion; we assume the pipe is relatively small, so there is no variation of pressure with r). 
Hence, we can write

 
du

r d

dx
p h dr∫ ∫= +

2μ
γ( )

 
(7.7)

This is integrated to provide the velocity profi le:

 
u r

r d

dx
p h C( ) ( )= + +

2

4μ
γ

 
(7.8)

where the constant of integration C can be evaluated using u r( )0 0=  so that

 
u r

r r d

dx
p h( )

( )
( )=

−
+

2
0
2

4μ
γ

 
(7.9)

For a horizontal pipe for which dh/dx = 0 the velocity profi le becomes

 
u r

dp

dx
r r( ) ( )= −

1

4
2

0
2

μ  
(7.10)

The above velocity profi le is a parabolic profi le; the fl ow is sometimes referred to 
as a Poiseuille fl ow. 

The same result can be obtained by solving the appropriate Navier-Stokes equa-
tion. If that is not of interest, skip the next part.

APPLYING THE NAVIER-STOKES EQUATIONS
The z-component differential momentum equation using cylindrical coordinates from 
Table 5.1 is applied to a steady, developed fl ow in a circular pipe. For the present 

3The minus sign is required since the stress is a positive quantity and du/dr is negative.
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situation we wish to refer to the coordinate in the fl ow direction as x and the velocity 
component in the x-direction as u(x); so, let’s replace the z with x and the v

z
with u. 

Then the differential equation takes the form

ρ
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

v
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r
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r r

u
u

u

x

u

t

p

x
g+ + + = − +

⎛

⎝
⎜
⎜
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u

r r

u

r r

u u
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∂
∂
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∂
∂

∂
∂
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2 2

2

2

2

2

1 1

    no radial    no swirl   developed   steady                                                   symmetric   developed 

    velocity                      fl ow        fl ow                                                     fl ow           fl ow

Observe that the left-hand side of the equation is zero, i.e., the fl uid particles are not 
accelerating. Using ρ γ θ γg dh dx

x
= = −sin / , the above equation simplifi es to

 

1 1

μ
γ∂

∂
∂
∂

∂
∂x

p h
r r

r
u

r
+( ) = ⎛

⎝⎜
⎞
⎠⎟  

(7.11)

where we observed that we could write
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(7.12)

Now, we see that the left-hand side of Eq. (7.11) is at most a function of x, and the 
right-hand side is a function of r. This means that each side is at most a constant, 
say l, since x and r can be varied independently of each other. So, we replace the 
partial derivatives with ordinary derivatives and write Eq. (7.11) as

 λ = ⎛
⎝⎜

⎞
⎠⎟

1

r

d

dr
r

du

dr
  or  d r

du

dr
rdr⎛

⎝⎜
⎞
⎠⎟ = λ  (7.13)

This is integrated to provide

 
r

du

dr

r
A= +λ

2

2  
(7.14)

Multiply by dr/r and integrate again. We have

 
u r

r
A r B( ) ln= + +λ

2

4  
(7.15)
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Refer to Fig. 7.4: the two boundary conditions are, u is fi nite at r = 0, and u = 0 at  
r = r

0
. Thus, A = 0 and B r= −λ 0

2 4/ .  Since l is the left-hand side of Eq. (7.11), we 
can write Eq. (7.15) as

 
u r

d

dx
p h r r( ) ( )( )= + −

1

4
2

0
2

μ
γ

 
(7.16)

This is the parabolic velocity distribution of a developed laminar fl ow in a pipe, 
sometimes called a Poiseuille fl ow. For a horizontal pipe, dh/dx = 0 and

 
u r
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dx
r r( ) ( )= −

1

4
2

0
2

μ  
(7.17)

QUANTITIES OF INTEREST
The fi rst quantity of interest in the fl ow in a pipe is the average velocity V. If we 
express the constant-pressure gradient as dp/dx = Δp/L where Δp is the pressure 
drop (a positive number) over the length L, there results
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(7.18)

The maximum velocity occurs at r = 0 and is

 
u

r p

L
Vmax = =0

2

4
2

Δ
μ     

(7.19)

Rewriting Eq. (7.19), the pressure drop is

 
Δ p

LV

r
=

8

0
2

μ

 
(7.20)

The shear stress at the wall can be found by considering a control volume of length 
L in the pipe. For a horizontal pipe the pressure force balances the shear force so 
that the control volume yields

 
π π τ τr p r L

r p

L0
2

0 0 0
02
2

× = × ∴ =Δ
Δ

    
(7.21)
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Sometimes a dimensionless wall shear called the friction factor f is used. It is 
defi ned to be

 
f

V
=

τ
ρ

0

1
8

2

 
(7.22)

We also refer to a head loss h
L
 defi ned as Δ p/γ . By combining the above equations, 

it can be expressed as the Darcy-Weisbach equation:

 
h

p
f

L

D

V

gL = =
Δ
γ

2

2  
(7.23)

It is valid for both a laminar and a turbulent fl ow in a pipe. In terms of the Reynolds 
number, the friction factor for a laminar fl ow is [combining Eqs. (7.20) and (7.23)]

 
f =

64

Re  
(7.24)

where Re = VD/n. If this is substituted into Eq. (7.23), we see that the head loss is 
directly proportional to the average velocity in a laminar fl ow, which is also true of 
a laminar fl ow in a conduit of any cross section.

EXAMPLE 7.1
The pressure drop over a 30-m length of 1-cm-diameter horizontal pipe trans-
porting water at 20°C is measured to be 2 kPa. A laminar fl ow is assumed. Deter-
mine (a) the maximum velocity in the pipe, (b) the Reynolds number, (c) the wall 
shear stress, and (d) the friction factor.

Solution
(a) The maximum velocity is found to be

u
r p

Lmax m= =
×

× ×
=−

0
2 2

34

0 005 2000

4 10 30
0 4167

Δ
μ

.
. //s

Note: The pressure must be in pascals in order for the units to check. It is wise to 
make sure the units check when equations are used for the fi rst time. The above 
units are checked as follows:

m N/m

(N s/m m
m/s

2

2

×
⋅ ×

=
2
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(b) The Reynolds number, a dimensionless quantity, is (use V = u
max 

/ 2)

Re
/

= =
×

=−

VD

ν
( . ) .0 4167 2 0 01

10
2080

6

This exceeds 2000 but a laminar fl ow can exist at higher Reynolds numbers if a 
smooth pipe is used and care is taken to provide a fl ow free of disturbances. Note 
how low the velocity is in this relatively small pipe. Laminar fl ows do not exist 
in most engineering applications unless the fl uid is extremely viscous or the 
dimensions are quite small.
(c) The wall shear stress due to the viscous effects is found to be

τ 0
0

2

0 005 2000

2 30
0 1667= =

×
×

=
r p

L

Δ .
. Pa

If we had used the pressure in kPa, the stress would have had units of kPa.
(d) Finally, the friction factor, a dimensionless quantity, is

f
V

= =
× ×

=
τ

ρ
0
2 22

0 1667

0 5 1000 0 4167 2
0 0076

/ /

.

. ( . )
. 88

u(y)

x

h

dx
–dh

pdy

(p + dp)dy
U gdxdy

tdx

(t + dt)dx

q

b

Figure 7.5 Steady, developed fl ow between parallel plates.

7.3 Laminar Flow Between Parallel Plates
Steady, developed laminar fl ow between parallel plates (the top plate moving with 
velocity U) will be derived applying Newton’s second law to the element of Fig. 7.5 
or using the appropriate Navier-Stokes equation of Chap. 5. Either derivation can 
be used.
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THE ELEMENTAL APPROACH
The element of fl uid shown in Fig. 7.5 can be considered a control volume into and 
from which the fl uid fl ows or it can be considered a mass of fl uid at a particular 
moment. Considering it to be an instantaneous mass of fl uid that is not accelerating 
in this steady, developed fl ow, Newton’s second law takes the form

  ∑ = − + + − + + =F pdy p dp dy dx d dx dx dyx 0 or ( ) ( ) sinτ τ τ γ θ 00  (7.25)

where t is the shear on the wall of the element and g is the specifi c weight of the 
fl uid. We have assumed a unit length into the paper (in the z-direction). To simplify, 
divide by dxdy and use dh dx= − sinθ  with h measured in the vertical direction:

 

d

dy

d

dx
p h

τ γ= +( )
 

(7.26)

For this laminar fl ow the shear stress is related to the velocity gradient by τ μ= du dy/  
so that Eq. (7.26) becomes

 
μ γd u
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p h

2

2
= +( )

 
(7.27)

The left-hand side of the equation is a function of y only for this developed fl ow (we 
assume a wide channel with an aspect ratio in excess of 8) and the right-hand side 
is a function of x only. So, we can integrate twice on y to obtain

 
u y

d p h
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(7.28)

Using the boundary conditions u(0) = 0 and u(b) = U, the constants of integration 
are evaluated and a parabolic profi le results:
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(7.29)

If the plates are horizontal and U = 0, the velocity profi le simplifi es to

 
u y

p

L
by y( ) ( )= −

Δ
2

2

μ  
(7.30)

where we have let d(p + g h)/dx = −Δp/L  for the horizontal plates, where Δ p is the 
pressure drop, a positive quantity. 
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If the fl ow is due only to the top horizontal plate moving with velocity U, with 
zero pressure gradient, it is a Couette fl ow so that u y Uy b( ) .= /  If both plates are 
stationary and the fl ow is due only to a pressure gradient, it is a Poiseuille fl ow.

The same result can be obtained by solving the appropriate Navier-Stokes equa-
tion. If that is not of interest, skip the next part. 

APPLYING THE NAVIER-STOKES EQUATIONS
The x-component differential momentum equation in rectangular coordinates [see 
Eq. (5.18)] is selected for this steady, developed fl ow with streamlines parallel to 
the walls in a wide channel (at least an 8 to 1 aspect ratio):
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(7.31)

 steady   developed   streamlines parallel                               developed     wide channel 

                                        to wall

where the channel makes an angle of q with the horizontal. Using dh = −dx sinq this 
partial differential equation simplifi es to
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d

dx
p h

2

2

1
= +

μ
γ( )

 
(7.32)

where the partial derivatives have been replaced by ordinary derivatives since u 
depends on y only and p is a function of x only.

Because the left-hand side of Eq. (7.32) is a function of y and the right-hand side 
is a function of x, both of which can be varied independent of each other, the two 
sides can be at most a constant, say l, so that

 

d u
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2

2
= λ

 
(7.33)

Integrating twice provides

 
u y y Ay B( ) = + +

1

2
2λ

 
(7.34)

Refer to Fig. 7.5: the boundary conditions are u(0) = 0 and u(b) = U providing
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b
B= − =λ

2
0

 
(7.35)
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The velocity profi le is thus
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where l has been used as the right-hand side of Eq. (7.32). 
In a horizontal channel we can write d(p + lh)/dx = −Δp/L. If U = 0 the velocity 

profi le is
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L
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(7.37)

This is a Poiseuille fl ow. If the pressure gradient is zero and the motion of the top 
plate causes the fl ow, it is called a Couette fl ow with u(y) = Uy/b.

QUANTITIES OF INTEREST
Let us consider several quantities of interest for the case of two fi xed plates with U = 0. 
The fi rst quantity of interest in the fl ow is the average velocity V. The average velocity 
is, assuming unit width of the plates
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(7.38)

The maximum velocity occurs at y = b/2 and is
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The pressure drop, rewriting Eq. (7.38), for this horizontal4 channel, is 

 
Δp

LV

b
=

12
2

μ
 

(7.40)

4For a sloped channel simply replace p with (p + g h).
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The shear stress at either wall can be found by considering a free body of length L 
in the channel. For a horizontal channel the pressure force balances the shear force:

 
( ) ( )b p L

b p

L
× × = × × ∴ =1 2 1

20 0Δ
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(7.41)

In terms of the friction factor f, defi ned by

 

f
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τ
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(7.42)

the head loss for the horizontal channel is
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p
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L
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(7.43)

Several of the above equations can be combined to fi nd

 
f =

48

Re  
(7.44)

where Re = bV/n. If this is substituted into Eq. (7.43), we see that the head loss is 
directly proportional to the average velocity in a laminar fl ow.

The above equations were derived for a channel with an aspect ratio greater than 8. 
For lower aspect-ratio channels, the sides would require additional terms since the 
shear acting on the side walls would infl uence the central part of the fl ow.

If interest is in a horizontal channel fl ow where the top plate is moving and there 
is no pressure gradient, the velocity profi le would be the linear profi le

 
u y

U

b
y( ) =

 
(7.45)

EXAMPLE 7.2
The thin layer of rain at 20°C fl ows down a parking lot at a relatively con-
stant depth of 4 mm. The area is 40 m wide with a slope of 8 cm over 60 m 
of length. Estimate (a) the fl ow rate, (b) shear at the surface, and (c) the 
Reynolds number. 
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Solution
(a) The velocity profi le can be assumed to be one half of the profi le shown in 
Fig. 7.5, assuming a laminar fl ow. The average velocity would remain as given 
by Eq. (7.38), i.e.,

V
b h

L
=

2

12

γ
μ

where Δ p has been replaced with g h. The fl ow rate is

Q AV b
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(b) The shear stress acts only at the solid wall so Eq. (7.41) would provide

τ γ
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(c) The Reynolds number is 
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2
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== 69 8.

The Reynolds number is below 1500 so the assumption of laminar fl ow is 
acceptable.

7.4 Laminar Flow Between Rotating Cylinders
Steady fl ow between concentric cylinders, as shown in Fig. 7.6, is another example 
of a laminar fl ow that we can solve analytically. Such a fl ow exists below a Reynolds 
number5 of 1700. Above 1700, the fl ow might be a complex laminar fl ow or a tur-
bulent fl ow. We will again solve this problem using a fl uid element and using the 
appropriate Navier-Stokes equation; either method may be used.

THE ELEMENTAL APPROACH
Two rotating concentric cylinders are displayed in Fig. 7.6. We will assume vertical 
cylinders so body forces will act normal to the circular fl ow with the only nonzero 
velocity component vq . The element of fl uid selected, shown in Fig. 7.6, has no angular 

5The Reynolds number is defi ned as Re = w
1
r

1
 d / v where d  =  r

2 
- r

1
.
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acceleration in this steady-fl ow condition. Consequently, the summation of torques 
acting on the element is zero:

 τ π τ τ π× × − + × + × + =2 2 0rL r d r dr L r dr( ) ( ) ( )     (7.46)

where t (r) is the shear stress and L is the length of the cylinders, which must be 
large when compared to the gap width d = r

2
 – r

1
. Equation (7.46) simplifi es to

τ τ τ τ2 2 02 2rdr r d rd dr d dr+ + + =( )  (7.47)

The last two terms of Eq. (7.46) are higher-order terms that are negligible when 
compared to the fi rst two terms so that the simplifi ed equation is
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(7.48)

Now we must recognize that the t in Eq. (7.48) is6 −t
rq of  Table 5.1 with entry under 

“Stresses.” For this simplifi ed application, the shear stress is related to the velocity 
gradient by
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(t +dt)2p(r + dr)L

r

dr

uq
yr

r2

r1

Fluid element from
between the cylinders

Fluid between
the cylinders

w2

w1

q

t 2prL

Figure 7.6 Flow between concentric cylinders.

6The minus sign results from the shear stress in Fig.7.6 being on a negative face in the 
positive direction, the sign convention for a stress component.
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This allows Eq. (7.48) to be written, writing the partial derivatives as ordinary 
derivatives since vθ  depends on r only, as
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Multiply by dr, divide by mr, and integrate:
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or, since rd dr r d dr r/ / / /( )v v vθ θ θ= − , this can be written as

 

d

dr r
A

r

d r

dr
A

v v vθ θ θ+ = =or
1 ( )
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Now integrate again and obtain
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Using the boundary conditions v vθ θω ω= = = =r r r r r r1 1 1 2 2 2at and at ,  the 
constants are found to be
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(7.54)

The same result can be obtained by solving the appropriate Navier-Stokes equa-
tion; if that is not of interest, skip the next part.

APPLYING THE NAVIER-STOKES EQUATIONS
The q-component differential momentum equation of Table 5.1 is selected for this 
circular motion with v vr z= =0 0and :
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Replace the partial derivatives with ordinary derivatives since vθ  depends on r 
only and the equation becomes
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12

2 2
= + −
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dr r
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dr r
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(7.56)

which can be written in the form
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Multiply by dr and integrate:
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Integrate once again:
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The boundary conditions v vθ θω ω( ) ( )r r r r1 1 2 2= =and  allow
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(7.60)

QUANTITIES OF INTEREST
Many applications of rotating cylinders involve the outer cylinder being fi xed, that 
is, ω2 0= .  The velocity distribution, found in the preceding two sections, with A 
and B simplifi ed, becomes
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The shear stress τ1 ( −τ θr  from Table 5.1) acts on the inner cylinder. It is
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The torque T needed to rotate the inner cylinder is
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The power �W  required to rotate the inner cylinder with rotational speed ω1  is
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This power, required because of the viscous effects in between the two cylinders, 
heats up the fl uid in bearings and often demands cooling to control the temperature.

For a small gap between the cylinders, as occurs in lubrication problems, it is 
acceptable to approximate the velocity distribution as a linear profi le, a Couette
fl ow. Using the variable y of Fig. 7.6 the velocity distribution is
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(7.65)

where y is measured from the outer cylinder in toward the center.

EXAMPLE 7.3
The viscosity is to be determined by rotating a 6-cm-diameter, 30-cm-long cyl-
inder inside a 6.2-cm-diameter cylinder. The torque is measured to be 0.22 
N · m and the rotational speed is measured to be 3000 rpm. Use Eqs. (7.61) and 
(7.65) to estimate the viscosity. Assume that S = 0.86.

Solution
The torque is found from Eq. (7.63) based on the velocity distribution of Eq. (7.61):
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Using Eq. (7.65), the torque is found to be
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The error assuming the linear profi le is 5.3 percent. 
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We should check the Reynolds number to make sure the fl ow is laminar, as 
assumed. The Reynolds number is, using ν μ ρ= / ,  

Re
( ) . .
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r

ν
/

/ 000 0 86
619

×
=

. )

The laminar fl ow assumption is acceptable since Re < 1700.

7.5 Turbulent Flow in a Pipe
The Reynolds numbers for most fl ows of interest in conduits exceed those at which 
laminar fl ows cease to exist. If a fl ow starts from rest, it rather quickly undergoes 
transition to a turbulent fl ow. The objective of this section is to express the velocity 
distribution in a turbulent fl ow in a pipe and to determine quantities associated with 
such a fl ow.

A turbulent fl ow is a fl ow in which all three velocity components are nonzero and 
exhibit random behavior; in addition, there must be a correlation between the ran-
domness of at least two of the velocity components. If there is no correlation, it is 
simply a fl uctuating fl ow. For example, a turbulent boundary layer usually exists near 
the surface of an airfoil but the fl ow outside the boundary layer is not referred to as 
“turbulent” even though there are fl uctuations in the fl ow; it is the free stream.

Let’s present one way of describing a turbulent fl ow. The three velocity compo-
nents at some point are written as

 u u u= + ′ = + ′ = + ′v v v w w w  (7.66)

where u  denotes a time-average part of the x-component velocity and ′u  denotes 
the fl uctuating random part. The time-average of u is
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= ∫
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0
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(7.67)

where T is suffi ciently large when compared to the fl uctuation time. For a devel-
oped turbulent pipe fl ow, the three velocity components would appear as in Fig. 7.7. 
The only time-average component would be u  in the fl ow direction. Yet there must 
exist a correlation between at least two of the random velocity fl uctuations, e.g., 

′ ′ ≠u v 0;  such velocity correlations result in turbulent shear.

We can derive an equation that relates ′ ′u v  and the time-average velocity com-
ponent u  in the fl ow direction of a turbulent fl ow but we cannot solve the equation 
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even for the simplest case of steady7 fl ow in a pipe. So, we will present experimen-
tal data for the velocity profi le and defi ne some quantities of interest for a turbulent 
fl ow in a pipe. 

First, let us describe what we mean by a “smooth” wall. A “smooth” wall and a 
“rough” wall are shown in Fig. 7.8. The viscous wall layer is a thin layer near the pipe 
wall in which the viscous effects are signifi cant. If this viscous layer of thickness dn   
covers the wall roughness elements, the wall is “smooth,” as in Fig. 7.8a; if the rough-
ness elements protrude out from the viscous layer, the wall is “rough,” as in Fig. 7.8b.

There are two methods commonly used to describe the turbulent velocity profi le 
in a pipe. These are presented in the following parts.

THE SEMI-LOG PROFILE
The time-average velocity profi le in a pipe is presented for a smooth pipe as a semi-
log plot in Fig. 7.9 with empirical relationships near the wall and centerline that 

q-component

x-component

u

u

u¢

r-component

v w

T

Figure 7.7 The three velocity components in a turbulent fl ow at a point where the fl ow is in the 
x-direction so that v w= = 0  and u ≠ 0.

(a) (b)

e e

Viscous
wall layer Viscous

wall layer
dn

dn

Figure 7.8 (a) A smooth wall and (b) a rough wall.

7Steady turbulent fl ow means the time-average quantities are independent of time.
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allow u du dy y r( ) .0 0 0 0= = =and / at  In the wall region, the characteristic veloc-
ity is the shear velocity8 uτ τ ρ= 0 /  and the characteristic length is the viscous
length ν /uτ ; the profi les are

 u

u

u y u y
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τ τ

ν ν
= ≤ ≤0 5   (viscous wall layer)    (7.68)
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Figure 7.9 Experimental data for a smooth wall in a developed pipe fl ow. (a) The wall 
region. (b) The outer region.

8The shear velocity is a fi ctitious velocity that allows experimental data to be presented in 
dimensionless form that is valid for all turbulent pipe fl ows. The viscous length is also fi ctitious.
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The interval 5 < /u yτ ν < 30  is a buffer zone in which the experimental data do not 
fi t either of the curves. The outer edge of the wall region may be as low as u yτ ν/  = 
3000 for a low Reynolds number fl ow.

The viscous wall layer plays no role for a rough pipe. The characteristic length 
is the average roughness height e and the wall region is represented by
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(wall region, rough pipe) (7.70)

The outer region is independent of the wall effects and thus is normalized for both 
smooth and rough walls using the radius as the characteristic length; it is
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(the outer region)    (7.71)

An additional empirical relationship h y r( )/ 0
 is needed to complete the profi le for 

y > 0.15r
0
. Most relationships that satisfy du dy y r/ at= =0 0

 will do.
The wall region of Fig. 7.9a and the outer region of Fig. 7.9b overlap as dis-

played in Fig. 7.9a. For smooth and rough pipes, respectively,
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(rough pipes) (7.73)

We do not often desire the velocity at a particular location but, if we do, before 
umax

 can be found, uτ  must be known. To fi nd uτ  we must know τ 0
. To fi nd τ 0

 we 
can use [see Eq. (7.5)]
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The friction factor f can be estimated using the power-law profi le that follows if the 
pressure drop is not known.

THE POWER-LAW PROFILE
Another approach, although not quite as accurate as the above, involves the power-
law profi le given by
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where n is between 5 and 10, usually an integer. This can be integrated to give the aver-
age velocity:

 
V

r
u r r dr

n

n n
u

r

= =
+ +∫

1
2

2

1 2 10
2

0

2
0

π
π( )

( )( ) max

 
(7.76)

The value of n in Eq. (7.75) is related empirically to f  by

 n f= −1 2/

 (7.77)

For smooth pipes n is related to the Reynolds number in Table 7.1.
The power-law profi le cannot be used to estimate the wall shear since it has an 

infi nite slope at the wall for all values of n. It also does not have a zero slope at the 
pipe centerline so it is not valid near the centerline. It is, however, used to estimate 
the energy fl ux and momentum fl ux of pipe fl ows.

Finally, it should be noted that the kinetic-energy correction factor is 1.03 if n = 7; 
hence, it is often taken as unity for turbulent fl ows. 

EXAMPLE 7.4
Water at 20°C fl ows in a 4-cm-diameter pipe with a fl ow rate of 0.002 m3/s. Esti-
mate (a) the wall shear stress, (b) the maximum velocity, (c) the pressure drop 
over 20 m, (d) the viscous layer thickness, and (e) determine if the wall is smooth 
or rough assuming the roughness elements to have a height of 0.0015 mm. Use 
the power-law profi le.

Solution
First, the average velocity and Reynolds number are
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(a) To fi nd the wall shear stress, fi rst fi nd the friction factor. From Table 7.1 the 
value n = 6.8 is selected and from Eq. (7.77)

f
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= = =
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6 8
0 0216

2 2.
.

Table 7.1 Exponent n for Smooth Pipes

Re = VD/n 4  × 103 105 106 >2  × 106

n 6 7 9 10
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The wall shear stress [see Eq. (7.74)] is 
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(b) The maximum velocity is found using Eq. (7.76):
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(c) The pressure drop is
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(d) The friction velocity is 
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and the viscous layer thickness is

δν
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6
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u .
. m or 0.0301 mm

(e) The height of the roughness elements is given as 0.0015 mm (drawn tubing), which 
is less than the viscous layer thickness. Hence, the wall is smooth. Note: If the height 
of the wall elements was 0.046 mm (wrought iron), the wall would be rough.

LOSSES IN PIPE FLOW
The head loss is of considerable interest in pipe fl ows. It was presented in Eqs. 
(7.23) and (4.24) and is
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z zL L= = + −
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2 12
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Δ
γ  

(7.78)

So, once the friction factor is known, the head loss and pressure drop can be determined. 
The friction factor depends on a number of properties of the fl uid and the pipe:

 f f V D e= ( , , , , )ρ μ  (7.79)
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where the roughness height e accounts for the turbulence generated by the rough-
ness elements. A dimensional analysis allows Eq. (7.79) to be written as

 
f f

e

D
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⎛
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⎞
⎠⎟

,
ρ

μ  
(7.80)

where e/D is termed the relative roughness. 
Experimental data has been collected and presented in the form of the Moody

diagram, displayed in Fig. 7.10 for developed fl ow in a pipe. The roughness heights 
are also included on the diagram. There are several features of this diagram that 
should be emphasized. 

• A laminar fl ow exists up to Re ≅ 2000 after which there is a critical zone 
in which the fl ow is undergoing transition to a turbulent fl ow. This may 
involve transitory fl ow that alternates between laminar and turbulent fl ows.

• The friction factor in the transition zone, which begins at about Re = 4000 
and decreases with increasing Reynolds numbers, becomes constant at the 
end of the zone, as signifi ed by the dashed line.
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Figure 7.10 The Moody diagram.
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• The friction factor in the completely turbulent zone is constant and depends 
on the relative roughness e/D. Viscous effects, and thus the Reynolds 
number, do not affect the friction factor.

• The height e of the roughness elements in the Moody diagram is for new 
pipes. Pipes become fouled with age changing both e and the diameter D 
resulting in an increased friction factor. Designs of piping systems should 
include such aging effects.

An alternate to using the Moody diagram is to use formulas developed by Swamee 
and Jain for pipe fl ow; the particular formula selected depends on the information 
given. The formulas to determine quantities in long reaches of developed pipe fl ow 
(these formulas are not used in short lengths or in pipes with numerous fi ttings and 
geometry changes) are as follows:
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Either SI or English units can be used in the above equations. Note also that the 
Moody diagram and the above equations are accurate to within about 5 percent, 
suffi ciently accurate for most engineering applications.

EXAMPLE 7.5
A pressure drop of 500 kPa is measured over 200 m of a horizontal length of 
8-cm-diameter cast iron pipe transporting water at 20°C. Estimate the fl ow rate 
using (a) the Moody diagram and (b) an alternate equation.

Solution
The relative roughness (fi nd e in Fig. 7.10) is

e

D
= =

0 26

80
0 00325

.
.
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Assuming a completely turbulent fl ow, the friction factor from Fig. 7.10 is f = 
0.026. The head loss is 

h
p

L = = =
Δ
γ

500 000

9800
51 m

The average velocity, from Eq. (7.78) is

V
gDh

f L
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× × ×
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=
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.
. m/s

We must check the Reynolds number to make sure the fl ow is completely turbu-
lent. It is

Re = =
×

= ×−

VD

ν
3 92 0 08

10
3 14 10

6
5. .

.

This is just acceptable and requires no iteration to improve the friction factor. So, 
the fl ow rate is

Q AV= = × × =π 0 04 3 92 0 01972. . . m /s3

(b) Use the alternate equation that relates Q to the other quantities, i.e., Eq. (7.82). 
We use the head loss from part (a):
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This equation was easier to use and gave an acceptable result.

LOSSES IN NONCIRCULAR CONDUITS
To determine the head loss in a relatively “open” noncircular conduit, we use the 
hydraulic radius R, defi ned as

 R
A

P
=  (7.84)
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where A is the cross-sectional area and P is the wetted perimeter, the perimeter of 
the conduit that is in contact with the fl uid. The Reynolds number, relative rough-
ness, and head loss are, respectively, 
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2VR e
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h f
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V

gLν
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roughness  
(7.85)

A rectangular area should have an aspect ratio less than 4. This method should not 
be used with more complex shapes, like that of an annulus.

MINOR LOSSES
The preceding losses were for the developed fl ow in long conduits. Most piping 
systems, however, include sudden changes such as elbows, valves, inlets, etc., that 
add additional losses. These losses are called minor losses that may, in fact, add up 
to exceed the head loss found in the preceding sections. These minor losses are 
expressed in terms of a loss coeffi cient K, defi ned for most devices by
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V
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2

2  
(7.86)

A number of loss coeffi cients are included in Table 7.2. Note that relatively low loss 
coeffi cients are associated with gradual contractions whereas relatively large coef-
fi cients with enlargements, due to the separated fl ows in enlargements. Separated 
and secondary fl ows also occur in elbows resulting in surprisingly large loss coef-
fi cients. Vanes that eliminate such separated or secondary fl ows can substantially 
reduce the losses, as noted in the table.

We often equate the losses in a device to an equivalent length of pipe, i.e., 
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This provides the relationship
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(7.88)

If a pipe is quite long, greater than 1000 diameters, minor losses can be neglected. 
For lengths as short as 100 diameters, the minor losses may exceed the frictional 
losses. For short and intermediate lengths, the minor losses should be included.



Table 7.2 Minor Loss Coeffi cients K for Selected Devices*

Type of fi tting diameter 

Screwed Flanged

2.5 cm  5 in. 10 cm 5 cm 10 cm 20 cm

Globe value (fully open)   8.2   6.9   5.7   8.5    6.0   5.8
(half open) 20 17 14 21  15 14
(one-quarter open) 57 48 40 60  42 41
Angle valve (fully open)   4.7   2.0   1.0   2.4    2.0   2.0
Swing check valve (fully open)   2.9   2.1   2.0   2.0    2.0   2.0
Gate valve (fully open)   0.24   0.16   0.11   0.35    0.16   0.07
Return bend   1.5   0.95   0.64   0.35    0.30   0.25
Tee (branch)   1.8   1.4   1.1   0.80    0.64   0.58
Tee (line)   0.9   0.9   0.9   0.19    0.14   0.10
Standard elbow   1.5   0.95   0.64   0.39    0.30   0.26

Long sweep elbow  0.72   0.41   0.23   0.30    0.19   0.15

45° elbow  0.32   0.30   0.29

Square-edged entrance   
 

  0.5

Reentrant entrance
    

  0.8

Well-rounded entrance
    

  0.03

Pipe exit   1.0

Area ratio

Sudden contraction† 2:1   0.25

5:1   0.41

10:1   0.46

Area ratio A /A
0

Orifi ce plate 1.5:1   0.85
2:1   3.4
4:1 29
≥6:1

2 78 0 6
0

2

. .
A

A
−

⎛
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⎞
⎠⎟

Sudden enlargement‡

   
1 1

2

2

−
⎛
⎝⎜

⎞
⎠⎟

A

A

90° miter bend (without vanes)  
1.1

                           
(with vanes)

      
0.2

General contraction   (30° included angle) 0.02

  (70° included angle) 0.07

*Values for other geometries can be found in Technical Paper 410. The Crane Company, 1957.
†Based on exit velocity V

2
.

‡Based on entrance velocity V
1
.
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EXAMPLE 7.6
A 1.5-cm-diameter, 20-m-long plastic pipe transports water from a pressurized 
400-kPa tank out to a free open end located 3 m above the water surface in the 
tank. There are three elbows in the water line and a square-edged inlet from the 
tank. Estimate the fl ow rate.

Solution
The energy equation is applied between the tank and the faucet exit:
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Assume that the pipe has e/D = 0 and that Re ≅ 2 × 105 so that the Moody dia-
gram gives f = 0.016. The energy equation gives

0
2 9 8

400 000

9800
3 0 016

20

0 015
3 1 62

2

=
×

− + + × + ×
V

.
.

.
. ++

⎛
⎝⎜

⎞
⎠⎟

×
×

∴ =

.
.

.

5
2 9 8

5 18

2V

V m/s

The Reynolds number is then Re . . . .= × = ×−5 18 0 15 10 7 8 106 4/  Try f = 0.018:
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resulting in Re . . . .= × = ×−4 95 0 15 10 7 4 106 4/  This is close enough, so we use 
V = 5.0 m/s. The fl ow rate is

Q AV= = × × = × −π 0 0075 5 8 8 102 4. . m /s3
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HYDRAULIC AND ENERGY GRADE LINES
The energy equation is most often written so that each term has dimensions of 
length, i.e.,

 − =
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+
−

+ − +
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�
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V V
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p p
z z hS

L
2
2

1
2

2 1
2 12 γ

 (7.89)

In piping systems it is often conventional to refer to the hydraulic grade line and the 
energy grade line. The hydraulic grade line (HGL), the dashed line in Fig. 7.11, is 
the locus of points located a distance p/g above the centerline of a pipe. The energy 
grade line (EGL), the solid line in Fig. 7.11, is the locus of points located a distance 
V 2 / 2 above the HGL. The following observations relate to the HGL and the EGL.

• The EGL approaches the HGL as the velocity goes to zero. They are identical 
on the surface of a reservoir.

• Both the EGL and the HGL slope downward in the direction of the fl ow 
due to the losses in the pipe.

• A sudden drop occurs in the EGL and the HGL equal to the loss due to a 
sudden geometry change, such as an entrance or a valve.

• A jump occurs in the EGL and the HGL due to a pump and a drop due to a 
turbine. 

• If the HGL is below the pipe, there is a vacuum in the pipe, a condition that 
is most often avoided in piping systems because of possible contamination.
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HT = WT/mg
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(hL)exit

(hL)valve

(hL)expansion
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z

Datum
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. .

Figure 7.11 The hydraulic grade line (HGL) and the energy grade line (EGL).
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7.6 Open Channel Flow
Consider the developed turbulent fl ow in an open channel, shown in Fig. 7.12. 
The water fl ows at a depth of y and the channel is on a slope S, which is assumed 
to be small so that sin .θ = S  The cross section could be trapezoidal, as shown, or 
it could be circular or triangular. Let us apply the energy equation between the 
two sections:
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(7.90)

The head loss is the elevation change, i.e.,

 h z zL = −1 2 = =L LSsinθ  (7.91)

where L is the distance between the two selected sections. Using the head loss 
expressed by Eq. (7.85), we have

 h f
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V

g
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g

f
RSL = = =

4 2

82
2or  (7.92)

The Reynolds number of the fl ow in an open channel is invariably large and the 
channel rough so that the friction factor is a constant independent of the velocity 
(see the Moody diagram of Fig. 7.10) for a particular channel. Consequently, the 
velocity is related to the slope and hydraulic radius by

 V C RS=  (7.93)

L

y

1
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y
m

1

b

q

Figure 7.12 Flow in an open channel.
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where C is a dimensional constant called the Chezy coeffi cient; it has been related 
experimentally to the channel roughness and the hydraulic radius by

 C
n

R=
1 1 6/  (7.94)

The dimensionless constant n is a measure of the wall roughness and is called the 
Manning n. Values for a variety of wall materials are listed in Table 7.3.

The fl ow rate in an open channel follows from Q = AV and is

 Q
n

AR S=
1 2 3 1 2/ /  (7.95)

This is referred to as the Chezy-Manning equation. It can be applied using English 
units by replacing the “1” in the numerator with “1.49.”

If the channel surface is smooth, e.g., glass or plastic, Eq. (7.95) should not be 
used since it assumes a rough surface. For channels with smooth surfaces the Darcy-
Weisbach equation, Eq. (7.85), along with the Moody diagram should be used.

Table 7.3 Values* of the Manning n

Wall material Manning n

Brick 0.016

Cast or wrought iron 0.015

Concrete pipe 0.015

Corrugated metal 0.025

Earth 0.022

Earth with stones and weeds 0.035

Finished concrete 0.012

Mountain streams 0.05

Planed wood 0.012

Sewer pipe 0.013

Riveted steel 0.017

Rubble 0.03

Unfi nished concrete 0.014

Rough wood 0.013

*The values in this table result in fl ow rates too large for R > 3 m. 
The Manning n should be increased by 10 to 15 percent for the 
larger channels.
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EXAMPLE 7.7
Water at 20°C is fl owing in a 2-m-wide rectangular, brick channel at a depth of 
120 cm. The slope is 0.0012. Estimate the fl ow rate using (a) the Chezy-Manning 
equation and (b) the Darcy-Weisbach equation.

Solution
First, calculate the hydraulic radius:
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(a) The Chezy-Manning equation provides

Q
n

AR S=

= × × × ×

1

1

0 016
2 1 2 0 545 0 001

2 3 1 2

2 3

/ /

/

.
( . ) . . 22 3 471 2/ .= m /s3

(b) To use the Darcy-Weisbach equation, we must fi nd the friction factor f. The  
Moody diagram requires a value for e. Use a relatively large value such as that 
for rougher concrete, i.e., e = 2 mm. Since the hydraulic radius R = D/4 for a 
circle, we use

e

D

e

R
= =

×
=

4

0 002

4 0 545
0 00092

.

.
.

The Moody diagram gives f ≅  0.019. The Darcy-Weisbach equation takes the 
form of Eq. (7.92):

V
g

f
RS= =

×
× × =

8 8 9 8

0 019
0 545 0 0012 1 64

.

.
. . . m/s

The fl ow rate is then

Q AV= = × × =2 1 2 1 64 3 94. . . m /s3
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Check the Reynolds number:

Re
. .

.= =
× ×

= ×−

4 4 1 64 0 545

10
3 6 10

6
6VR

ν

This is suffi ciently large so that  f  is acceptable. Note that the Q of part (a) is about 
12 percent lower than that of part (b). That of part (b) is considered more accurate.

         Quiz No. 1
1. The maximum average velocity for a laminar fl ow of SAE-30 oil at 80°C in 

a 2-cm-diameter pipe using a critical Reynolds number of 2000 is nearest

(A) 1.8 m/s

(B) 1.4 m/s

(C) 1.0 m/s

(D) 0.82 m/s 

 2. Water is fl owing in a 2-cm-diameter pipe with a fl ow rate of 0.0002 m3/s. 
For a conventional entrance, estimate the entrance length if the water 
temperature is 40°C.

(A) 10 m

(B) 15 m

(C) 20 m

(D) 25 m 

 3. Water at 40°C fl ows through a 4-cm-diameter pipe at a rate of 6 L/min. 
Assuming a laminar fl ow, the pressure drop over 20 m of length in the 
horizontal pipe is nearest

(A) 11 Pa

(B) 21 Pa

(C) 35 Pa

(D) 42 Pa 
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 4. Water at 20°C fl ows through a 12-mm-diameter pipe on a downward slope 
so that Re = 2000. What angle would result in a zero pressure drop?

(A) 0.86°
(B) 0.48°
(C) 0.22°
(D) 0.15°

 5. What pressure gradient dp/dx would provide a zero shear stress on the 
stationary lower plate for horizontal plates with the top plate moving to the 
right with velocity U. Assume a laminar fl ow with b separating the plates.

(A) U/b2

(B) 2U/b2

(C) 4U/b2

(D) U/2b2 

 6. Assuming a Couette fl ow between a stationary and a rotating cylinder, the 
power needed to rotate the inner rotating cylinder is

(A) 2 1
3 2πμ ω δr L/  

(B) πμ ω δr L1
3 2 2 2/

(C) πμ ω δr L1
3 2 /

(D) 2 1
3 2 2 2πμ ω δr L /  

 7. A 12-cm-diameter pipe transports water at 25°C in a pipe with roughness 
elements averaging 0.26 mm in height. Estimate the maximum velocity in 
the pipe if the fl ow rate is 0.0004 m3/s.

(A) 0.075 m/s

(B) 0.065 m/s

(C) 0.055 m/s

(D) 0.045 m/s 

 8. SAE-30 oil at 20°C is transported in a smooth 40-cm-diameter pipe with an 
average velocity of 10 m/s. Using the power-law velocity profi le, estimate 
the pressure drop over 100 m of pipe.

(A) 300 kPa

(B) 275 kPa

(C) 250 kPa

(D) 225 kPa



CHAPTER 7 Internal Flows 161

 9. Water at 20°C fl ows at 0.02 m3/s in an 8-cm-diameter galvanized-iron pipe. 
Calculate the head loss over 40 m of horizontal pipe

(A) 6.9 m

(B) 8.1 m

(C) 9.7 m

(D) 10.3 m

 10. If the pressure drop in a 100-m section of horizontal 10-cm-diameter 
galvanized-iron pipe is 200 kPa, estimate the fl ow rate if water at 20°C is 
fl owing. 

(A) 0.018 m3/s

(B) 0.027 m3/s

(C) 0.033 m3/s

(D) 0.041 m3/s

 11. Water at 20°C fl ows from a reservoir out of a 100-m-long, 4-cm-diameter 
galvanized-iron pipe to the atmosphere. The outlet is 20 m below the surface 
of the reservoir. What is the exit velocity? There is a square-edged entrance.

(A) 2.0 m/s

(B) 3.0 m/s

(C) 4.0 m/s

(D) 5.0 m/s

 12. Water fl ows in a 2-m-wide rectangular fi nished concrete channel with a 
slope of 0.001 at a depth of 80 cm. Estimate the fl ow rate.

(A) 2.15 m3/s

(B) 2.45 m3/s

(C) 2.75 m3/s

(D) 2.95 m3/s

         Quiz No. 2
 1. A drinking fountain has an opening of 4 mm in diameter. The water rises 

a distance of about 20 cm in the air. Is the fl ow laminar or turbulent as it 
leaves the opening? Make any assumptions needed.



162 Fluid Mechanics Demystifi ed

 2. SAE-30 oil at 80°C occupies the space between two cylinders of 2 cm and 
2.2 cm in diameter. The outer cylinder is stationary and the inner cylinder 
rotates at 1000 rpm. Is the oil in a laminar or turbulent state? Use Re

crit
 = 

1700 where Re = ω δ νr
1

/  and δ = −r r
2 1

.

 3. A parabolic velocity profi le is desired at the end of a 10-m-long, 8-mm-
diameter tube attached to a tank fi lled with water 20°C. An experiment 
is run during which 60 L is collected in 90 min. Is the laminar fl ow 
assumption reasonable? 

 4. The pressure drop over a 15-m length of 8-mm-diameter horizontal pipe 
transporting water at 40°C is measured to be 1200 Pa. A laminar fl ow is 
assumed. Determine the wall shear stress and the friction factor.

 5. What pressure gradient is needed so that the fl ow rate is zero for laminar 
fl ow between horizontal parallel plates if the lower plate is stationary and 
the top plate moves with velocity U? The distance b separates the plates.

 6. Water at 20°C fl ows down an 80-m-wide parking lot at a constant depth of 
5 mm. The slope of the parking lot is 0.0002. Estimate the fl ow rate and the 
maximum shear stress.

 7. SAE-10 oil at 20°C fi lls the gap between a rotating cylinder and a fi xed 
outer cylinder. Estimate the torque needed to rotate a 20-cm-long cylinder 
at 40 rad/s assuming a Couette fl ow.

 8. A 12-cm-diameter pipe transports water at 25°C in a pipe with roughness 
elements averaging 0.26 mm in height. Decide if the pipe is smooth or 
rough if the fl ow rate is 0.0004 m3/s.

 9. SAE-30 oil at 20°C is transported in a smooth 40-cm-diameter pipe with an 
average velocity of 10 m/s. Using the power-law velocity profi le, estimate 
the viscous wall layer thickness.

 10. SAE-10 oil at 80°C fl ows at 0.02 m3/s in an 8-cm-diameter galvanized-iron 
pipe. Calculate the head loss over 40 m of horizontal pipe.

 11. A pressure drop of 6000 Pa is measured over a 20 m length as water at 
30°C fl ows through the 2- by 6-cm smooth conduit. Estimate the fl ow rate.

 12. An 88 percent effi cient pump is used to transport 30°C water from a 
lower reservoir through a 8-cm-diameter galvanized-iron pipe to a higher 
reservoir whose surface is 40 m above the surface of the lower one. The 
pipe has a total length of 200 m. Estimate the power required for a fl ow rate 
of 0.04 m3/s.

 13. Water is not to exceed a depth of 120 cm in a 2-m-wide fi nished concrete 
channel on a slope of 0.001. What would the fl ow rate be at that depth?



External Flows

The subject of external fl ows involves both low Reynolds-number fl ows and high 
Reynolds-number fl ows. Low Reynolds-number fl ows are not of interest in most 
engineering applications and will not be considered; fl ow around spray droplets, 
river sediment, fi laments, and red blood cells would be examples that are left to the 
specialists. High Reynolds-number fl ows, however, are of interest to many engi-
neers and include fl ow around airfoils, vehicles, buildings, bridge cables, stadiums, 
turbine blades, and signs, to name a few. 

It is quite diffi cult to solve for the fl ow fi eld external to a body, even the simplest of 
bodies like a long cylinder or a sphere. We can, however, develop equations that allow us 
to estimate the growth of the thin viscous layer, the boundary layer, which grows on a fl at 
plate or the rounded nose of a vehicle. Also, coeffi cients have been determined experi-
mentally that allow the drag and the lift to be approximated with suffi cient accuracy. 

CHAPTER 8

The fl ow around a blunt body involves a separated region, a region in which the 
fl ow separates from the body and forms a recirculating region downstream, as 

8.1 Basics
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shown in Fig. 8.1. A wake, a region infl uenced by viscosity, is also formed; it is a 
diffusive region that continues to grow (some distance downstream the velocity is 
less than the free-stream velocity V). A laminar boundary layer exists near the front 
of the body followed by a turbulent boundary layer as shown in Fig. 8.1. An inviscid 
fl ow, often referred to as the free stream, exists on the front of the body and outside 
the boundary layer, separated region, and wake. The fl ow around a streamlined 
body has all the same components as that of Fig. 8.1 except it does not have a sig-
nifi cant separated region, and the wake is much smaller. 

The free-stream inviscid fl ow is usually irrotational although it could be a rota-
tional fl ow with vorticity, e.g., the fl ow of air near the ground around a tree trunk or 
water near the ground around a post in a river; the water digs a depression in the 
sand in front of the post and the air digs a similar depression in snow in front of the 
tree, a rather interesting observation. The vorticity in the approaching air or water 
accounts for the observed phenomenon.

It should be noted that the boundary of the separated region is shown at an aver-
age location. It is, however, highly unsteady and is able to slowly exchange mass 
with the free stream, even though the time-average streamlines remain outside the 
separated region. Also, the separated region is always located inside the wake.

Interest in the fl ow around a blunt object is focused on the drag, the force the 
fl ow exerts on the body in the direction of the fl ow.1 Lift is the force exerted normal 

1Actually, the body moves through the stationary fl uid. To create a steady fl ow, the fl uid 
moves past the stationary body, as in a laboratory wind tunnel; pressures and forces remain 
the same. To obtain the actual velocity, the fl ow velocity through the wind tunnel is sub-
tracted from the velocity at each point. 

Figure 8.1 The details of a fl ow around a blunt body.
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to the fl ow direction and is of interest on airfoils and streamlined bodies. The drag 
F

D
 and lift F

L
 are specifi ed in terms of the drag coeffi cient C

D
and lift coeffi cient C

L
, 

respectively, by

 
F AV C F AV CD D L L= =

1

2

1

2
2 2ρ ρand

 
(8.1)

where, for a blunt body, the area A is the area projected on a plane normal to the 
fl ow direction, and for an airfoil the area A is the chord (the distance from the nose 
to the trailing edge) times the length. 

The force due to the lower pressure in the separated region dominates the drag 
force on a blunt body, the subject of Sec. 8.2. The viscous stress that acts on and 
parallel to each boundary element is negligible and thus little, if any, attention is 
paid to the boundary layer on the surface of a blunt body. The opposite is true for 
an airfoil, the subject of Sec. 8.3; the drag force is primarily due to the viscous 
stresses that act on the boundary elements. Consequently, there is considerable 
interest in the boundary layer that develops on a streamlined body. 

The basics of boundary-layer theory will be presented in Sec. 8.5. But fi rst, 
the inviscid fl ow outside the boundary layer (see Fig. 8.1) must be known. So, 
inviscid fl ow theory will be presented in Sec. 8.4. The boundary layer is so thin 
that it can be ignored when solving for the inviscid fl ow. The inviscid fl ow solu-
tion provides the lift, which is not signifi cantly infl uenced by the viscous bound-
ary layer, and it also provides the pressure distribution on the body’s surface as 
well as the velocity on that surface (since the inviscid solution ignores the 
effects of viscosity, the fl uid does not stick to the boundary but slips by the 
boundary). Both the pressure and the velocity at the surface are needed in the 
boundary-layer solution.

8.2 Flow Around Blunt Bodies

DRAG COEFFICIENTS
The primary fl ow parameter that infl uences the drag around a blunt body is the 
Reynolds number. If there is no free surface, the drag coeffi cients for both smooth 
and rough spheres and long cylinders are presented in Fig. 8.2; the values for 
streamlined cylinders and spheres are also included.

Separation always occurs in the fl ow of a fl uid around a blunt body if the 
Reynolds number is suffi ciently high. However, at low Reynolds numbers (it is 
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called a Stokes fl ow if Re < 5), there is no separation and the drag coeffi cient, for a 
sphere, is given by

 CD = <
24

1
Re

Re  (8.2)

Separation occurs for Re ≥ 10 beginning over a small area on the rear of the 
sphere until the separated region reaches a maximum at Re ≅  1000. The drag coef-
ficient is then relatively constant until a sudden drop occurs in the vicinity of 
Re = 2 × 105. This sudden drop is due to the transition of the boundary layer just 
before separation undergoing transition from a laminar fl ow to a turbulent fl ow. A 
turbulent boundary layer contains substantially more momentum and is able to 
move the separation region further to the rear (see the comparison in Fig. 8.3). The 
sudden decrease in drag could be as much as 80 percent. The surface of an object 
can be roughened to cause the boundary layer to undergo transition prematurely; 
the dimples on a golf ball accomplish this and increase the fl ight by up to 100 per-
cent when compared to the fl ight of a smooth ball.

After the sudden drop occurs, the drag coeffi cient again increases with increased 
Reynolds number. Experimental data does not provide the drag coeffi cients for 
either the sphere or the cylinder for high Reynolds numbers. The values of 0.4 for 
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Figure 8.2 Drag coeffi cients for fl ow around spheres and long cylinders (E. Achenbach, J. 
“Fluid Mech.,” v.54, 1972).
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long smooth cylinders and 0.2 for smooth spheres for Reynolds numbers exceeding 
106 are often used (contrary to the data of Fig. 8.2).

Streamlining can substantially reduce the drag coeffi cients of blunt bodies. The 
drag coeffi cients for streamlined cylinders and spheres are also shown in Fig. 8.2. 
The included angle at the trailing edge should not exceed about 20° if the separated 
region is to be minimized. The drag due to the shear stress acting on the enlarged 
surface will certainly increase for a streamlined body, but the drag due to the low 
pressure will be reduced much more so that the total drag will be less. Also, stream-
lining eliminates the vortices  that cause vibrations when shed from a blunt body.

For cylinders of fi nite length with free ends, the drag coeffi cient must be reduced 
using the data of Table 8.1. If a fi nite-length cylinder has one end fi xed to a solid 

Figure 8.3 Laminar and turbulent velocity profi les for the same boundary 
layer thickness.
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Table 8.1 Drag Coeffi cients for Finite-Length Circular 
Cylinders* with Free Ends†

L/D C
D
/C

D∞

∞ 1

40 0.82

20 0.76

10 0.68

5 0.62

3 0.62

2 0.57

1 0.53

*The drag coeffi cient C
D∞ is from Fig. 8.2.

†If one end is fi xed to a solid surface, double the length of the cylinder.
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Table 8.2 Drag Coeffi cients for Various Blunt Objects

Object Re C
D

Square cylinder of width w

                    
L/w =

∞{1
>104

>104

2.0

1.1

Rectangular plates

L/w =

∞⎧

⎨
⎪

⎩
⎪

20

5

1

>103

>103

>103

>103

2.0

1.5

1.2

1.1

Circular disc >103 1.1

Parachute >107 1.4

Modern automobile >105 0.29

Van >105 0.42

Bicycle

upright rider

bent over rider

draftingg rider

⎧
⎨
⎪

⎩⎪

1.1

0.9

0.5

Semitruck

standard

with streamlined deflector

wwith deflector and gap seal

⎧
⎨
⎪

⎩⎪

0.96

0.76

0.07

surface, the length of the cylinder is doubled. Note that the L/D of a cylinder with 
free ends has to be quite large before the end effects are not signifi cant. 

Drag coeffi cients for a number of common shapes that are insensitive to high 
Reynolds numbers are presented in Table 8.2.

EXAMPLE 8.1
A 5-cm-diameter, 6-m-high pole fi xed in concrete supports a fl at, circular 4-m-
diameter sign. For a wind speed of 30 m/s, estimate the maximum moment that 
must be resisted by the concrete. 
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Solution
To obtain the maximum moment, the wind is assumed normal to the sign. From 
Table 8.2 the drag coeffi cient for a disc is 1.1. The moment due to the drag force, 
which acts at the center of the sign, is

M F L A V C LD D1 1 1 1
2

1 1

2 2

1

2

1

2
1 22 2 30 1

= × = ×

= × × × × ×

ρ

π. .11 8 60700× = ⋅N m

where the density at sea level of 1.22 kg/m3 is used since the elevation is not 
given. The moment due to the pole is 

M F L A V C LD D2 2 2 2
2

2 2

2

1

2

1

2
1 22 0 05 6 30

= × = ×

= × × × × ×

ρ

. . 00 7 3 346. × = ⋅N m

assuming a Reynolds number of Re . / .= × × =− −30 0 05 1 5 10 105 5 and high-
intensity fl uctuations in the air fl ow, i.e., a rough cylinder. The factor from 
Table 8.1 was not used since neither end was free. The moment that must be 
resisted by the concrete base is

M M M= + = + = ⋅1 2 60 700 346 61 000 N m

VORTEX SHEDDING
Long cylindrical bodies exposed to a fl uid fl ow can exhibit the phenomenon of 
vortex shedding at relatively low Reynolds numbers. Vortices are shed from elec-
trical wires, bridges, towers, and underwater communication wires, and can actu-
ally experience signifi cant damage. We will consider the vortices shed from a 
long circular cylinder. The shedding occurs alternately from each side of the cyl-
inder, as shown in Fig. 8.4. The shedding frequency f, in hertz, is given by the 
Strouhal number,

 St =
f D

V
 (8.3)
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If this shedding frequency is the same, or a multiple of a structure’s frequency, then 
there is the possibility that damage may occur due to resonance.

The shedding frequency cannot be calculated from equations; it is determined 
experimentally and shown in Fig. 8.5. Note that vortex shedding initiates at Re ≈ 40  
and for Re ≥ 300  the Strouhal number is essentially independent of Reynolds 
number and is equal to about 0.21. The vortex-shedding phenomenon disappears 
for Re > 104. 

Shed vortices

Vortex
being shed

Shed vortices

V

Free
stream

Figure 8.4 Vortices shed from a cylinder.
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Figure 8.5 Strouhal number for vortex shedding from a cylinder.
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EXAMPLE 8.2
A 6-cm-diameter cylinder is used to measure the velocity of a slow-moving air 
stream. Two pressure taps are used to determine that the vortices are shed with a 
frequency of 4 Hz. Determine the velocity of the air stream.

Solution
Assume the Strouhal number to be in the range 300 < Re < 10 000. Then

fD

V
V= =

×
=0 21

4 0 06

0 21
1 14.

.

.
.so that m/s

It is quite diffi cult to measure the velocity of an air stream this low. The measure-
ment of the shed vortices is one method of doing so.

CAVITATION
When a liquid fl ows from a region of relatively high pressure into a region of low 
pressure, cavitation may occur, that is, the pressure may be suffi ciently low so that 
the liquid vaporizes. This can occur in pipe fl ows in which a contraction and expan-
sion exists: in the vanes of a centrifugal pump, near the tips of propellers, on hydro-
foils, and torpedoes. It can actually damage the propellers and the steel shafts (due 
to vibrations) on ships and cause a pump to cease to function properly. It can, however, 
also be useful in the destruction of kidney stones, in ultrasonic cleaning devices, 
and in improving the performance of torpedoes.

Cavitation occurs whenever the cavitation number s, defi ned by

 
σ

ρ
=

−∞p p

V
v

1
2

2

     
 (8.4)

is less than the critical cavitation number s
crit

, which depends on the geometry and 
the Reynolds number. In Eq.(8.4), p∞ is the absolute pressure in the free stream and 
pv is the vapor pressure of the liquid. 

The drag coeffi cient of a body that experiences cavitation is given by

 C CD D( ) ( )( )σ σ= +0 1   (8.5)

where C
D
(0) is given in Table 8.3 for several bodies for Re ≅ 105.

The hydrofoil, an airfoil-type shape that is used to lift a vessel above the water 
surface, invariably cannot operate without cavitation. The area and Reynolds num-
ber are based on the chord length. The drag and lift coeffi cients along with the 
critical cavitation numbers are presented in Table 8.4.
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EXAMPLE 8.3 
A 2-m-long hydrofoil with chord length of 40 cm operates at 30 cm below the 
water’s surface with an angle of attack of 6°. For a speed of 16 m/s determine the 
drag and lift and decide if cavitation exists on the hydrofoil.

Solution
The pressure p∞ must be absolute. It is

p h p∞ = + = × + =γ atm Pa abs9800 0 3 100 000 102 900.

Table 8.3 Drag Coeffi cients for Zero Cavitation 
Numbers at Re ≅ 105

Geometry Angle C
D
(0)

Sphere 0.30

Disk (circular) 0.8

Cylinder (circular) 0.50

Flat plate (rectangular) 0.88

Two-dimensional wedge

 120 0.74

 90 0.64

 60 0.49

 30 0.28

Cone (axisymmetric)

 120 0.64

 90 0.52

 60 0.38

 30 0.20

Table 8.4 Drag and Lift Coeffi cients and Critical Cavitation Numbers for Hydrofoils 
for 105 < Re < 106

Angle (degrees) Lift Coeffi cient Drag Coeffi cient Critical Cavitation Number

−2 0.2 0.014 0.5

0 0.4 0.014 0.6

2 0.6 0.015 0.7

4 0.8 0.018 0.8

6 0.95 0.022 1.2

8 1.10 0.03 1.8

10 1.22 0.04 2.5
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Assuming the water temperature is about 15°C, the vapor pressure is 1600 Pa 
(see Table C.1) so that the cavitation number is

σ =
−

=
−

× ×
=∞p p

V
v

1
2

2 2

102 900 1705

0 5 1000 16
0 79

ρ .
.

This is less than the critical cavitation number of 1.2 given in Table 8.4 so cavita-
tion is present. Note: we could have used pv 

= 0, as is often done, with suffi cient 
accuracy. The drag and lift are

F V AC

F

D D= = × × × × × =
1

2

1

2
1000 16 2 0 4 0 022 22502 2ρ . . N

LL LV AC= = × × × × × =
1

2

1

2
1000 16 2 0 4 0 95 973002 2ρ . . N

8.3 Flow Around Airfoils
Airfoils are streamlined so that separation does not occur. Airfoils designed to oper-
ate at subsonic speeds are rounded at the leading edge, whereas those designed for 
supersonic speeds may have sharp leading edges. The drag on an airfoil is primarily 
due to the shear stress that acts on the surface. The boundary layer, in which all the 
shear stresses are confi ned, that develops on an airfoil is very thin (see in Fig. 8.6) 
and can be ignored when solving for the inviscid fl ow surrounding the airfoil. The 
pressure distribution that is determined from the inviscid fl ow solution is infl uenced 
very little by the presence of the boundary layer. Consequently, the lift is estimated 
on an airfoil by ignoring the boundary layer and integrating the pressure distribu-
tion of the inviscid fl ow. The inviscid fl ow solution also provides the velocity at the 
outer edge of the thin boundary layer, a boundary condition needed when solving 

Inviscid flow

Boundary layer

chord, c

a

Figure 8.6 Flow around an airfoil at an angle of attack a.
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the boundary-layer equations; the solution of the boundary-layer equations on a fl at 
plate will be presented in Sec. 8.5.

The lift and drag on airfoils will not be calculated from the fl ow conditions 
but from graphical values of the lift and drag coeffi cients. These are displayed 
in Fig. 8.7 for a conventional airfoil with Re ≅ 9 × 106. The lift and drag coeffi -
cients are defi ned as

 
C

F

cLV
C

F

cLVL
L

D
D= =

1
2

2 1
2

2ρ ρ
 

(8.6)

Conventional airfoils are not symmetric and are designed to have positive lift at 
zero angle of attack, as shown in Fig. 8.7. The lift is directly proportional to the 
angle of attack until just before stall is encountered. The drag coeffi cient is also 
directly proportional to the angle of attack up to about 5°. The cruise condition is at 
an angle of attack of about 2°, where the drag is a minimum at C

L
 = 0.3 as noted. 

Mainly, the wings supply the lift on an aircraft. But an effective length is the tip-to-
tip distance, the wingspan, since the fuselage also supplies lift. 

The drag coeffi cient is essentially constant up to a Mach number of about 0.75. It 
then increases by over a factor of 10 until a Mach number of one is reached at which 
point it begins to slowly decrease. So, cruise Mach numbers between 0.75 and 1.5 are 
avoided to stay away from the high drag coeffi cients. Swept-back airfoils are used 
since it is the normal component of velocity that is used when calculating the Mach 
number; that allows a higher plane velocity before the larger drag coeffi cients are 
encountered. 
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Figure 8.7 Lift and drag coeffi cients for a conventional airfoil at Re ≅ 9 × 106.
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Slotted fl aps are also used to provide larger lift coeffi cients during takeoff and 
landing. Air fl ows from the high-pressure region on the bottom of the airfoil through 
a slot to energize the slow-moving air in the boundary layer on the top side of the 
airfoil thereby reducing the tendency to separate and stall. The lift coeffi cient can 
reach 2.5 with a single-slotted fl ap and 3.2 with two slots. 

EXAMPLE 8.4
Determine the takeoff speed for an aircraft that weighs 15 000 N including its 
cargo if its wingspan is 15 m with a 2-m chord. Assume an angle of attack of 8° 
at takeoff.

Solution
Assume a conventional airfoil and use the lift coeffi cient of Fig. 8.7 of about 
0.95. The velocity is found from the equation for the lift coeffi cient:

C
F

cLV V
VL

L= =
× × × ×

∴ =
1
2

2 1
2

2

15000

1 2 2 15
30

ρ
0.95 m

.
//s

The answer is rounded off to two signifi cant digits, since the lift coeffi cient of 
0.95 is approximated from the fi gure.

8.4 Potential Flow 
BASICS
When a body is moving in an otherwise stationary fl uid, there is no vorticity present 
in the undisturbed fl uid. To create a steady fl ow, a uniform fl ow with the body’s 
velocity is superimposed on the fl ow fi eld so that the vorticity-free fl ow moves by 
the stationary body, as in a wind tunnel. For high Reynolds-number fl ows, the vis-
cous effects are concentrated in the boundary layer and the wake (the wake includes 
the separated region). For a streamlined body and over the front part of a blunt 
body, the fl ow outside the boundary layer is free of viscous effects so it is an invis-
cid fl ow. The solution of the inviscid fl ow problem provides the velocity fi eld and 
the pressure fi eld. The pressure is not signifi cantly infl uenced by the boundary layer 
so the pressure integrated over the body’s surface will provide the lift. The velocity 
at the surface of the body2 from the inviscid fl ow solution will be the velocity at the 

2If there are no viscous effects, the fl uid does not stick to a boundary but is allowed to 
slip.
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outer edge of the thin boundary layer needed in the boundary-layer solution (to be 
presented in Sec. 8.5). So, before the boundary layer can be analyzed on a body, the 
inviscid fl ow must be known. 

A potential fl ow (or irrotational fl ow), is one in which the velocity fi eld can be 
expressed as the gradient of a scalar function, that is,

 V = Æ f (8.7)

where f is the velocity potential. For a potential fl ow, the vorticity is zero:

 w  = Æ × V = 0 (8.8)

This can be shown to be true by expanding in rectangular coordinates and using 
Eq. (8.7). 

To understand why vorticity cannot exist in regions of an irrotational fl ow, con-
sider the effect of the three types of forces that can act on a cubic fl uid element: the 
pressure and body forces act through the center of the element, and consequently, 
cannot impart a rotary motion to the element. It is only the viscous shear forces that 
are able to give rotary motion to fl uid particles. Hence, if the viscous effects are 
nonexistent, vorticity cannot be introduced into an otherwise potential fl ow. 

If the velocity is given by Eq. (8.7), the continuity equation (5.8) for an incom-
pressible fl ow provides

 Æ·Æf = Æ 2f = 0 (8.9)

which is the famous Laplace equation. In rectangular coordinates it is written as
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(8.10)

With the required boundary conditions, this equation could be solved. But, rather 
than attempting to solve the resulting boundary-value problem directly, we will 
restrict our interest to plane fl ows, identify several simple fl ows that satisfy Laplace 
equation, and then superimpose those simple fl ows to form more complex fl ows of 
interest. Since Laplace equation is linear, the superimposed fl ows will also satisfy 
Laplace equation.

First, however, we will defi ne another scalar function that will be quite useful in 
our study. For the plane fl ows of interest, the stream function y, is defi ned by

 
u

y x
= = −

∂
∂

∂
∂

ψ ψ
and v

 
(8.11)
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so that the continuity equation (5.8) with ∂ ∂w / z = 0  (for a plane fl ow) is satisfi ed 
for all plane fl ows. The vorticity [see Eqs. (8.8) and (3.14)] then provides

 
ω ∂

∂
∂
∂

∂
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∂
∂z x

u

y x y
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so that

 

∂
∂

∂
∂

2

2

2

2
0

ψ ψ
x y

+ =
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The stream function also satisfi es the Laplace equation. So, from the above equa-
tions we have

 
u

x y y x
= = = = −
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∂
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∂
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∂
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φ ψ φ ψ
and v

 
(8.14)

The equations between f and y in Eq. (8.14) form the Cauchy-Riemann equations 
and f and y  are referred to as harmonic functions. The function f  + iy  is the com-
plex velocity potential. The mathematical theory of complex variables is thus appli-
cable to this subset of fl uid fl ows: steady, incompressible, inviscid plane fl ows. 

Three items of interest contained in the above equations are: 

• The stream function is constant along a streamline.

• The streamlines and lines of constant potential intersect at right angles.

• The difference of the stream functions between two streamlines is the fl ow 
rate q per unit depth between the two streamlines, i.e., q = −ψ ψ2 1.

EXAMPLE 8.5
Show that y is constant along a streamline.

Solution
A streamline is a line to which the velocity vector is tangent. This is expressed in 
vector form as V dr 0× = ,  which, for a plane fl ow (no z variation), using 
dr = i + jdx dy  takes the form udy dx− v = 0. Using Eq. (8.11), this becomes

∂
∂

∂
∂

ψ ψ
y

dy
x

dx+ = 0

This is the defi nition of dy  from calculus, thus dy  = 0 along a streamline, or, in 
other words, y is constant along a streamline.
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SEVERAL SIMPLE FLOWS 
Several of the simple fl ows to be presented are much easier understood using polar 
(cylindrical) coordinates. The Laplace equation, the continuity equation, and the 
expressions for the velocity components for a plane fl ow (see Table 5.1) are 

 ∇ = ⎛
⎝⎜

⎞
⎠⎟

+ =2
2

2

2

1 1
0ψ ψ ψ

θr r
r

r r

∂
∂

∂
∂

∂
∂

 (8.15)

           
1 1

0
r r

r
rr

∂
∂

∂
∂

( )v
v

+ =θ

θ     (8.16)

 v vr r r r r
= = = = −

∂
∂

∂
∂

∂
∂

∂
∂

φ ψ
θ

φ
θ

ψ
θ

1 1
and  (8.17)

where the expressions relating the velocity components to the stream function are 
selected so that the continuity equation is always satisfi ed. We now defi ne four 
simple fl ows that satisfy the Laplace equation:

     Uniform fl ow: ψ φ= =∞ ∞U y U x   (8.18)

     Line source:    ψ
π

θ φ
π

= =
q q

r
2 2

ln   (8.19)

     Vortex:       ψ
π

φ
π

θ= =
Γ Γ
2 2

lnr  (8.20)

     Doublet:    ψ μ θ φ μ θ
= − = −

sin cos

r r
   (8.21)

These simple plane fl ows are shown in Fig. 8.8. If a y-component is desired for the 
uniform fl ow, an appropriate term is added. The source strength q in the line source 
is the fl ow rate per unit depth; adding a minus sign creates a sink. The vortex strength 
Γ is the circulation about the origin, defi ned as

 
Γ = ⋅∫ V sd

L�
 

(8.22)
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where L is a closed curve, usually a circle, about the origin with clockwise being 
positive. The heavy arrow in the negative x-direction represents the doublet strength 
m in Fig. 8.8d. (A doublet can be thought of as a source and a sink of equal strengths 
separated by a very small distance.)

The velocity components are used quite often for the four simple fl ows pre-
sented. They follow for both polar and rectangular coordinates:

     Uniform fl ow:   
u U= =∞ v 0

vv vr U U= = −∞ ∞cos siθ θ nnθ
 (8.23)

     Line source:      
v vr

q

r

u

= =
2

0
π θ

==
+

=
+

q x

x y

q y

x y2 22π π2 2
v

22

 (8.24)

x

y

x

y

 y = 0y = Ap
y = 2Ap

(a) Uniform flow in the x-direction

(b) Line source

y = const

f = const
f = const

x

y

r

vq

(c) Vortex (d) Doublet

y

x

y = const

y = constf = const
f = const

q

Figure 8.8 Four simple plane potential fl ows.
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     Vortex:          
v vr = =0 θ −−

= −
+

=

Γ

Γ Γ
2

2 22

π

π π

r

u
y

x y

x
2 v

xx y2 + 2

 (8.25)

     Doublet:         
v vr r

= − = −
μ θ μ θ

θ
cos sin

2 rr

u
x y

x y

x

2

2 2

2 2

2
= −

−
+

= −μ μ
( )2 v

yy

x y( )2 + 2 2

    (8.26)

These four simple fl ows can be superimposed to create more complicated fl ows of 
interest. This will be done in the following section.

EXAMPLE 8.6
If the stream function of a fl ow is given as ψ θ= A ,  determine the potential 
function f.

Solution
We use Eq. (8.17) to relate the stream function to the potential function assuming 
polar coordinates because of the presence of q :

∂
∂

∂
∂

φ ψ
θ

φ θ θ
r r

A

r
r A r f= = ∴ = +

1
( , ) ln ( )

Now, use the second equation of Eq. (8.17):

1 1
0

r r

df

d r

∂
∂

∂
∂

φ
θ θ

ψ
= = − =  implying that 

df

dθ
= 0 so that f = const

Since we are only interested in the derivatives of the potential functions needed 
to provide the velocity and pressure fi elds, we simply let the constant be zero and 
thus

φ θ( , ) lnr A r=

So, we see that the potential function can be found if the stream function is known. 
Conversely, the stream function can be found if the potential function is known.
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SUPERIMPOSED FLOWS
The simple fl ows just defi ned can be superimposed to create complicated plane fl ows. 
Divide a surface, such as an airfoil, into a large number of segments and position 
sources or sinks (or doublets) at the center of each segment; in addition, add a 
uniform fl ow and a vortex. Then, adjust the various strengths so that the normal 
velocity component at each segment is zero and the rear stagnation point is located 
at the trailing edge. Obviously, a computer program would be used to create such a 
fl ow. We will not attempt it in this book but will demonstrate how fl ow around a 
circular cylinder can be created.

Superimpose the stream functions of a uniform fl ow and a doublet:

 
ψ θ μ θ

( , )
sin

r U y
r

= −∞
 

(8.27)

The velocity component vr  is (let y r= sin )θ

 
vr r

U
r

= = −∞
1

2

∂
∂
ψ
θ

θ μ θcos cos
 

(8.28)

A circular cylinder exists if there is a circle on which there is no radial velocity 
component, i.e., vr cr r= =0 at .  Set vr = 0  in Eq. (8.28) and fi nd 

 
U

rc
∞ − =cos cosθ μ θ

2
0

  
so that

  
r

Uc =
∞

μ

    
(8.29)

At this radius vr = 0  for all q and thus r rc=  is a streamline and the result is fl ow 
around a cylinder. The stagnation points occur where the velocity is zero; if r rc=  
this means where vθ = 0,  that is,

 

vθ
ψ θ μ θ θ= −

∂
∂

= − − = ∴− =
−

∞ ∞r
U

r
U

r rc c

sin
sin

sin
2

0 2 0

  

(8.30)

Thus, two stagnation points occur at q  = 0° and 180°. The streamline pattern would 
appear as in the sketch of Fig. 8.9. The circular streamline represents the cylinder, 
which is typically a solid, and hence our interest is in the fl ow outside the circle. For 
a real fl ow, there would be a separated region on the rear of the cylinder but the fl ow 
over the front part (perhaps over the whole front half, depending on the Reynolds 
number) could be approximated by the potential fl ow shown in the fi gure. The 
velocity that exists outside the thin boundary layer that would be present on a real 
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cylinder would be approximated as the velocity on the cylinder of the potential 
fl ow, that is, it would be given by

 vθ θ= − ∞2U sin  (8.31)

The pressure that would exist on the cylinder’s surface would be found by applying 
Bernoulli’s equation between the stagnation point (V = 0) where the pressure is 
p0 and some general point at rc and θ:

 
p pc = −0

2

2
ρ θv

 
(8.32)

This pressure would approximate the actual pressure for high Reynolds-number 
fl ows up to separation. For low Reynolds-number fl ows, say below Re ≈  50, vis-
cous effects are not confi ned to a thin boundary layer so potential fl ow does not 
approximate the real fl ow. 

To create fl ow around a rotating cylinder, as in Fig. 8.10, add a vortex to the 
stream function of Eq. (8.27) [use the cylinder’s radius of Eq. (8.29)]:

 ψ θ θ
π

( , )
sin

lnr U y r U
r

rc= − +∞ ∞
2

2

Γ
 (8.33)

y

x

r

q

rc

U∞

Figure 8.9 Potential fl ow around a circular cylinder. (The dashed lines are lines of 
constant f.)
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The cylinder’s radius remains unchanged since a vortex does not affect vr . The 
stagnation points change, however, and are located by letting vθ = =0 on r rc:

 
vθ

ψ θ θ
π

= − = − − − =
=

∞ ∞
∂
∂r

U r U
r rr r

c
c cc

sin
sin2

2 2
0

Γ

  
(8.34)

This locates the stagnation points at

 
θ

π
=

−−

∞

sin 1

4

Γ
r Uc  

(8.35)

If Γ > ∞4πr Uc , Eq. (8.35) is not valid (this would give sinθ > 1), so the stagnation 
point exists off the cylinder as shown in Fig. 8.10b. The radius is found by setting 
the velocity components equal to zero and the angle q  = 270°. 

The pressure on the surface of the rotating cylinder is found using Bernoulli’s 
equation to be

 
p p p

U

r Uc
c

c

= − = − +
⎛

⎝⎜
⎞
⎠⎟

∞

∞
0

2

0

2 2

2 2
2

2
ρ ρ θ

π
v

sin
Γ

    
(8.36)

If p
c
dA is integrated around the surface of the cylinder, the component in the fl ow 

direction, the drag, would be zero and the component normal to the fl ow direction, 
the lift, would be

 
F p r d UL c c= =∫ ∞sinθ θ ρ

π

0

2

Γ
    

(8.37)

(a) Γ < 4pU∞rc (b) Γ > 4pU∞rc

x

y

rc
Ω

x

y

rc
Ω

Figure 8.10 Flow around a rotating cylinder.
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It turns out that this expression for the lift is applicable for all cylinders including 
the airfoil. It is known as the Kutta-Joukowski theorem; it is exact for potential 
fl ows and is an approximation for real fl ows.

EXAMPLE 8.7
A 20-cm-diameter cylinder rotates clockwise at 200 rpm in an atmospheric air stream 
fl owing at 10 m/s. Locate any stagnation points and fi nd the minimum pressure.

Solution
First, fi nd the circulation. It is Γ = ⋅∫ V sd

L� which is the velocity rcΩ  multiplied 

by 2πrc ,  since V is in the direction of ds on the cylinder’s surface:

Γ Ω= = × × × =2 2 0 1 200 2 60 1 3162 2π π πrc . ( / ) . m /s2

This is less than 4 12 57πr Uc ∞ = . m /s2 , so the two stagnation points are on the 
cylinder at

θ
π π

=
−

=
−
× ×

= − °−

∞

−sin sin
.

.
1 1

4

1 316

4 0 1 10
6

Γ
r Uc

and 1186°

The minimum pressure exists at the very top of the cylinder (see Fig. 8.10), so 
apply Bernoulli’s equation [see Eq. (8.36)] between the free stream and the point 
on the top where θ = °90 :

p p
U U

r Uc
c

= + − +
⎛
⎝⎜

⎞
⎠⎟

= +

∞
∞ ∞

∞

ρ ρ θ
π

2 2 2

2 2
2

2

0 1 2

sin

.

Γ

×× − ° +
× ×

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

10

2
1 2 90

1 316

2 0 1 10

2 2

sin
.

.π
== −233 Pa

using r = 1.2 kg/m3 for atmospheric air. (If the temperature is not given, assume 
standard conditions.)

8.5 Boundary-Layer Flow
GENERAL INFORMATION
The observation that for a high Reynolds-number fl ow all the viscous effects can 
be confi ned to a thin layer of fl uid near the surface gives rise to boundary-layer 
theory. Outside the boundary layer the fl uid acts as an inviscid fl uid. So, the 
potential fl ow theory of the previous section provides both the velocity at the 
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outer edge of the boundary layer and the pressure at the surface. In this section we 
will provide the integral and differential equations needed to solve for the veloc-
ity distribution in the boundary layer. But, those equations are quite diffi cult to 
solve for curved surfaces, so we will restrict our study to fl ow on a fl at plate with 
zero pressure gradient.

The outer edge of a boundary layer cannot be observed, so we arbitrarily assign 
its thickness d (x), as shown in Fig. 8.11, to be the locus of points where the veloc-
ity is 99 percent of the free-stream velocity U(x) (the velocity at the surface from 
the inviscid fl ow solution). The pressure at the surface is not infl uenced by the 
presence of the thin boundary layer, so it is the pressure on the surface from the 
inviscid fl ow. Note that the  xy-coordinate system is oriented so that the x-coordinate 
is along the surface; this is done for the boundary-layer equations and is possible 
because the boundary layer is so thin that curvature terms do not appear in the 
describing equations.

A boundary layer is laminar near the leading edge or near a stagnation point. It 
undergoes transition at x

T
 to a turbulent fl ow if there is suffi cient length, as shown in 

Fig. 8.12. This transition occurs when the critical Reynolds number U∞x
T
/v = 5 × 103 

on smooth, rigid fl at plates in a zero pressure-gradient fl ow with low free-stream 

Edge of
boundary layerd (x)

y

x
x

y

U(x)

Inviscid-flow
velocity distribution

Boundary-layer
velocity distribution

y

Figure 8.11 A boundary layer.

Laminar
flow

First burst
appears

Burst rate
is const

Turbulent
flow

Viscous wall-
layer thickness dv(x)

xT

U∞
d(x)

Figure 8.12 A boundary layer undergoing transition.
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fl uctuation intensity3 and U∞x
T
/n = 3 × 105 for fl ow on rough fl at plates or with high 

free-stream fl uctuation intensity (intensity of at least 0.1). The transition region 
from laminar to turbulent fl ow is relatively short and is typically ignored so a tur-
bulent fl ow is assumed to exist at the location of the fi rst burst. 

The turbulent boundary layer thickens more rapidly than a laminar boundary 
layer and contains signifi cantly more momentum (if it has the same thickness), as 
observed from a sketch of the velocity profi les in Fig. 8.13. It also has a much 
greater slope at the wall resulting in a much larger wall shear stress. The instanta-
neous turbulent boundary layer varies randomly with time and position and can be 
20 percent thicker or 60 percent thinner at any position at an instant in time or at 
any time at a given position. So, we usually sketch a time-average boundary-layer 
thickness. The viscous wall layer with thickness d

v
, in which turbulent bursts are 

thought to originate, is quite thin compared to the boundary-layer thickness, as 
shown. 

It should be kept in mind that a turbulent boundary layer is very thin for most 
applications. On a fl at plate with U∞ = 5 m/s, the boundary layer would be about 7 cm 
thick after 4 m. If this were drawn to scale, the fact that the boundary layer is very 
thin would be quite apparent. Because the boundary layer is so thin and the velocity 
varies from zero at the wall to U(x) at the edge of the boundary layer, it is possible 
to approximate the velocity profi le in the boundary layer by assuming a parabolic 
or cubic profi le for a laminar layer and a power-law profi le for a turbulent layer. 
With the velocity profi le assumed, the integral equations, which follow, give the 
quantities of interest.

Turbulent
profile

Laminar
profile

Average boundary-
layer thickness

u(y)

y

d(x)
d n (x)

Figure 8.13 Laminar and turbulent boundary-layer profi les.

3Fluctuation intensity is ′ ∞u U2/  [see Eq. (7.66)].
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THE INTEGRAL EQUATIONS
An infi nitesimal control volume of thickness dx is shown in Fig. 8.14 with mass 
fl uxes in (b) and momentum fl uxes in (d). The continuity equation provides the 
mass fl ux �mtop  that crosses into the control volume through the top; it is

 
� � �m m m

x
dxudytop out in= − = ∫( )∂

∂
ρ

δ

0
    

(8.38)

The x-component momentum equation (Newton’s second law) is written as

     F mom mom momx∑ = − −� � �
out in top

    (8.39)

which becomes

  − − = −∫ ∫( ) ( )τ δ ρ
δ δ

ρ0

2

0 0
dx dp

x
u dy dx U x

x
dudy

∂
∂

∂
∂

( ) xx
 (8.40)

dx

d   + dd

U(x)

(a) Control volume

(c) Forces

(p + dp/2)dd

t0dx

(b) Mass flux

(d) Momentum flux

min =
0

.

mtop
.

mout =
0

.
+

0

momin =
.

momtop
.

momout =
.

rudy

ru2dy

ru2dy + ru2dydx

rudy

(p + dp)(d + dd)

rudydx

∂x

∂x

pd

d

ddd

0

d 0

d
0

d∂

∂

Figure 8.14 The infi nitesimal control volume for a boundary layer.
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where we have neglected4 pdd and dpdd since they are of smaller order than the 
remaining terms; we also used mom U x m� �top top= ( ) .  Divide by (–dx) and obtain the 
von Karman integral equation:

 
τ δ ρ ρ

δ δ

0 0

2

0
+ = −∫ ∫

dp

dx
U x

d

dx

d

dx
udy u dy( )

    
(8.41)

Ordinary derivatives have been used since after the integration only a function of x 
remains (d is a function of x). Also, the density r is assumed constant over the 
boundary layer.

For fl ow on a fl at plate with zero pressure gradient, i.e., U(x) = U∞ and ∂ ∂p x/ = 0, 
Eq. (8.41) can be put in the simplifi ed form

 
τ ρ

δ

0 0
= −∞∫

d

dx
u U u dy( )

    
(8.42)

If a velocity profi le u(x, y) is assumed for a particular fl ow, Eq. (8.42) along with 
τ μ0 0

=
=

∂ ∂u y
y

/  allows both d (x) and t
0
(x) to be determined.

Two additional lengths are used in the study of boundary layers. They are the 
displacement thickness d

d
 and the momentum thickness q defi ned by

 
δ

δ

d U
U u dy= −∫

1
0

( )
  

(8.43)

 
θ

δ
= −∫

1
2 0U

u U u dy( )     (8.44)

The displacement thickness is the distance the streamline outside the boundary 
layer is displaced because of the slower moving fl uid inside the boundary layer. The 
momentum thickness is the thickness of a fl uid layer with velocity U that possesses 
the momentum lost due to viscous effects; it is often used as the characteristic 
length for turbulent boundary-layer studies. Note that Eq. (8.42) can be written as

 τ ρ θ
0

2= ∞U
d

dx
    (8.45)

4pdd is small since we assume d to be small and dd is then an order smaller.
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LAMINAR AND TURBULENT BOUNDARY LAYERS
The boundary conditions that must be met for the velocity profi le in a boundary 
layer on a fl at plate with a zero pressure gradient are

 

u = 0 att y

u U

=
= ∞

0

at y

u

y

=

=

δ
∂
∂

0 at y = δ     
(8.46)

Laminar Boundary Layers
For a laminar boundary layer, we can either solve the x-component Navier-Stokes 
equation or we can assume a profi le such as a parabola. Since the boundary layer is 
so thin, an assumed profi le gives rather good results. Assume the parabolic profi le

 

u

U
A By Cy

∞

= + + 2

    
(8.47)

The above three boundary conditions require

 

0

1

0 2

2

=
= + +
= +

A

A B C

B C

δ δ
δ     

(8.48)

the solution of which is

 
A B C= = = −0

2 1
2δ δ     

(8.49)

This provides an estimate of the laminar-fl ow velocity profi le

 

u

U

y y

∞

= −2
2

2δ δ     
(8.50)

Substitute this profi le into the integral equation (8.42) and integrate:

 
τ ρ

δ δ δ δ
δ

0
2

0

2

2

2

2

2
1

2
= −

⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟∞∫

d

dx
U

y y y y
ddy U

d

dx
= ∞

2

15
ρ δ2

    
(8.51)
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The wall shear stress is also given by

 

τ μ μ
δ0

0

2
= =

=
∞

∂
∂

u

y
U

y     
(8.52)

Equate the two expressions for τ 0
 above to obtain

 
δ δd

U
dx=

15v

 
(8.53)

Integrate the above with δ = =0 0at x  and fi nd the expression for δ ( )x :

 δ ν
( ) .x

x

U
=

∞

5 48  (approximate solution)    (8.54)

This is about 10 percent higher than the more accurate solution of 

 δ ( )x
x

U
=

∞

5
v

 (accurate solution)   (8.55)

found by solving the Navier-Stokes equation in the next section. The wall shear 
stress is found by substituting Eq. (8.54) into Eq. (8.52) and is

 
τ ρ0

20 365( ) .x U
xU

= ∞
∞

v

   
 (8.56)

The local skin friction coeffi cient cf  is often of interest and is

 
c x

U xUf ( ) .= =
∞ ∞

τ
ρ

0

1
2

2 0 730
v

  
(8.57)

The skin friction coeffi cient C
f
 is a dimensionless drag force and is

 
C

F

U L

dx

U L U Lf
D

L

= = =
∞ ∞ ∞

∫
1
2

2

00

1
2

2 1 46
ρ

τ

ρ
.

v

   
(8.58)

The more accurate coeffi cients for t
0
, c

f
, and C

f
  are 0.332, 0.664, and 1.33, so the 

assumption of a parabolic velocity profi le for laminar boundary-layer fl ow has an 
error of about 10 percent.
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Turbulent Boundary Layers
For a turbulent boundary layer we often assume a power-law velocity profi le5 as we 
did for fl ow in a pipe. It is

 

u

U

y
n

n x

∞

= ⎛
⎝⎜

⎞
⎠⎟

=
δ

1 7/ Re <<
< <

10

8 10

9

7

810 Re7
x

10 108 9< <

⎧

⎨
⎪

⎩
⎪ Re x     

(8.59)

where Re .x U x= ∞ /v  Substitute this velocity profi le with n = 7 into Eq. (8.42) and 
integrate to obtain

 
τ ρ δ

0
27

72
= ∞U

d

dx   
(8.60)

The power-law velocity profi le yields t
0 
=

 μ∂ ∂u y/ = ∞  at y = 0 so it cannot be used 
at the wall. A second expression for t

0
 is needed; we select the Blasius formula, 

given by

 c
Uf =

⎛
⎝⎜

⎞
⎠⎟∞
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⎛
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⎞
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.
/

U
U

v
    (8.61)

Combine Eqs. (8.60) and (8.61) and fi nd

 
δ δ1 4

1 4

0 237/

/

.d
U

dx=
⎛
⎝⎜

⎞
⎠⎟∞

v

    
(8.62)

Assume a turbulent fl ow from the leading edge (the laminar portion is often quite 
short) and integrate from 0 to x:

 
δ =

⎛
⎝⎜

⎞
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<
∞

0 38 10
1 5

7. Re
/

x
U x x

v

    
(8.63)

5There are other more detailed and complicated methods for considering the turbulent 
boundary layer. They are all empirical since there are no analytical solutions of the turbu-
lent boundary layer.
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Substitute this into the Blasius formula and fi nd the local skin friction coeffi cient to be

 
c

U xf x=
⎛
⎝⎜

⎞
⎠⎟

<
∞

0 059 10
1 5

7. Re
/

v

    
(8.64)

The skin friction coeffi cient becomes

 
C

U Lf x=
⎛
⎝⎜

⎞
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<
∞

0 073 10
1 5

7. Re
/

v

    
(8.65)

The above formulas can actually be used up to Re ≅ 108 without substantial error.
If there is a signifi cant laminar part of the boundary layer, it should be included. 

If transition occurs at Re
crit

 = 5 × 105, then the skin friction coeffi cient should be 
modifi ed as

 
C

U L U Lf x=
⎛
⎝⎜

⎞
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∞ ∞

0 073 1700 10
1 5

7. Re
/

v v

       
(8.66)

For a rough plate, recall that Re
crit

 = 3 × 105; the constant of 1700 in Eq. (8.66) 
should be replaced with 1060.

The displacement and momentum thicknesses can be evaluated using the power-
law velocity profi le to be

 

δ

θ

d x
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(8.67)

There are additional quantities often used in the study of turbulent boundary 
layers. We will introduce two such quantities here. One is the shear velocity uτ  
defi ned to be

 
uτ

τ
ρ

= 0

    
(8.68)

It is a fi ctitious velocity and often appears in turbulent boundary-layer relation-
ships. The other is the thickness d

v
 of the highly fl uctuating viscous wall layer, 

displayed in Figs. 8.12 and 8.13. It is in this very thin layer that the turbulent bursts 
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are thought to originate. It has been related to the shear velocity through experi-
mental observations by

 
δ ν

ν
τ

=
5

u  
(8.69)

EXAMPLE 8.8
Atmospheric air at 20°C fl ows at 10 m/s over a smooth, rigid 2-m-wide, 4-m-long 
fl at plate aligned with the fl ow. How long is the laminar portion of the boundary 
layer? Predict the drag force on the laminar portion on one side of the plate.

Solution
Assuming the air to free of high-intensity disturbances, use the critical Reynolds 
number to be 5 × 105, i.e.,

U xT∞ = ×
ν

5 105

so that 

xT = × × × =−5 10 1 51 10 10 0 7555 5. / . m

The drag force, using Eq. (8.58) and a coeffi cient of 1.33 rather than the 1.46 (the 
coeffi cient of 1.33 is more accurate as stated), is 

F U L
U LD =

= × × × × ×

∞
∞

1 33

2

0 665 1 2 10 0 755 2
1

2

2

.

. . .
.

ρ ν
w

551 10

10 0 755
0 17

5×
×

=
−

.
. N

a rather small force.

EXAMPLE 8.9
Water at 20°C fl ows over a 2-m-long, 3-m-wide fl at plate at 12 m/s. Estimate the 
shear velocity, the viscous wall-layer thickness, and the boundary-layer thick-
ness at the end of the plate (assume a turbulent layer from the leading edge). 
Also, predict the drag force on one side of the plate.
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Solution
The Reynolds number is Re / / . .= = × = ×∞

−U x ν 12 2 10 2 4 106 7  So, with n = 7 
Eq. (8.64) provides

τ ρ ν
0

2

1 5

20 059

2
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=
.
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The shear velocity is then

uτ
τ
ρ

= = =0 142

1000
0 377. m/s

The viscous wall-layer thickness is

δ ν
ν

τ

= =
×

= ×
−

−5 5 10

0 377
1 33 10

6
5

u .
. m

The boundary-layer thickness is, assuming a turbulent layer from the leading edge,
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The drag force on one side of the plate is

F U L
U LD =

⎛
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⎞
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LAMINAR BOUNDARY-LAYER DIFFERENTIAL EQUATIONS
The laminar fl ow solution given in the preceding section was an approximate solu-
tion. In this section we will present a more accurate solution using the x-component 
Navier-Stokes equation. It is, for horizontal plane fl ow (no z-variation),
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(8.70)

We can simplify this equation and actually obtain a solution. First, recall that the 
boundary layer is very thin so that there is no pressure variation normal to the 
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boundary layer, i.e., the pressure depends on x only and it is the pressure at the wall 
from the potential fl ow solution. Since the pressure is considered known, the 
unknowns in Eq. (8.70) are u and v. The continuity equation 

 

∂
∂

∂
∂

u

x y
+ =

v
0

    
(8.71)

also relates u and v. So, we have two equations and two unknowns. Consider Figs. 
8.12 and 8.13; u changes from zero to U∞ over the very small distance d, resulting 
in very large gradients in the y-direction, whereas u changes quite slowly in the 
x-direction (holding y fi xed). Consequently, we conclude that 
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(8.72)

The differential equation (8.70) can then be written as
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(8.73)

The two acceleration terms on the left side of the equation are retained, since v may 
be quite small but the gradient ∂u/∂y is quite large. Equation (8.73) is the Prandtl 
boundary-layer equation. 

For fl ow on a fl at plate with dp/dx = 0, and in terms of the stream function y 
(recall that u y x= = −∂ ∂ ∂ ∂ψ ψ/ and /v ),  Eq. (8.73) takes the form
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(8.74)

If we let (trial-and-error and experience were used to fi nd this transformation)
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Eq. (8.74) becomes6
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This equation appears more formidable than Eq. (8.74), but if we let

 ψ ξ η νξ η( , ) ( )= ∞U F     (8.77)

and substitute this into Eq. (8.76), there results
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d F
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(8.78)

This ordinary differential equation can be solved numerically with the appropriate 
boundary conditions. They are

 F F F= ′ = = ′ =0 0 1at and at largeη η     (8.79)

which result from the velocity components
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(8.80)

The numerical solution to the boundary-value problem is presented in Table 8.5. 
The last two columns allow the calculation of v and t

0
, respectively. We defi ned the 

Table 8.5 The Laminar Boundary-Layer Solution with dp/dx = 0

η
ν

= ∞y
U

x F
′ = ∞F u U/

1
2

( )η ′ −F F ′′F

0 0 0 0 0.3321

1 0.1656 0.3298 0.0821 0.3230

2 0.6500 0.6298 0.3005 0.2668

3 1.397 0.8461 0.5708 0.1614

4 2.306 0.9555 0.7581 0.0642

5 3.283 0.9916 0.8379 0.0159

6 4.280 0.9990 0.8572 0.0024

7 5.279 0.9999 0.8604 0.0002

8 6.279 1.000 0.8605 0.0000
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boundary-layer thickness to be that thickness where u = 0.99U∞ and we observe that 
this occurs at h = 5. So, from this numerical solution, 
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(8.81)

Also,
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so that the wall shear stress for this boundary layer with dp/dx = 0 is
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(8.83)

The friction coeffi cients are

 
c
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∞
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ν

    
(8.84)

and the displacement and momentum thicknesses are (these require numerical 
integration)
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(8.85)

EXAMPLE 8.10 
Air at 30°C fl ows over a 2-m-wide, 4-m-long fl at plate with a velocity of 2 m/s 
and dp/dx = 0. At the end of the plate, estimate (a) the wall shear stress, (b) the 
maximum value of v in the boundary layer, and (c) the fl ow rate through the 
boundary layer. Assume laminar fl ow over the entire length.

Solution
The Reynolds number is Re .= = × × = ×∞

−U L / /ν 2 4 1 6 10 5 105 5  so laminar 
fl ow is reasonable. 
(a) The wall shear stress (this requires ′′F  at the wall) at x = 4 m is

τ ρ ν
0
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0 332 0 332 1 164 2
1 6 10 2

4
0= = × × ×

× ×
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∞
−

. . .
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U
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x
..00219 Pa
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(b) The maximum value of v requires the use of (h ′F – F). Its maximum value 
occurs at the outer edge of the boundary layer and is 0.860. The maximum value 
of v is

v = ′ − = ×
× ×

× =∞
−1

2

1

2

1 6 10 2

4
0 860 0 0012

5ν
η

U

x
F F( )

.
. . m/s

Note the small value of v compared to U∞ = 2 m/s.
(c) To fi nd the fl ow rate through the boundary layer, integrate the u(y) at x = 4 m: 
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         Quiz No. 1
 1. Estimate the drag coeffi cient for air at 10°C fl owing around a 

4.1-cm-diameter golf ball traveling at 35 m/s.

(A) 0.25

(B) 0.86

(C) 0.94

(D) 1.2

 2. A fl uid fl ows by a fl at circular disk with velocity V normal to the disk with 
Re > 103. Estimate the drag coeffi cient if the pressure is assumed constant 
over the face of the disk. Assume the pressure is zero on the backside.

(A) 1.1

(B) 1.0

(C) 0.9

(D) 0.8
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 3. Atmospheric air at 20°C is fl owing at 10 m/s normal to a 10-cm-wide, 
20-cm-long rectangular plate. The drag force is nearest

A) 2.95 N

(B) 2.41 N

(C) 1.76 N

(D) 1.32 N

 4. A 20-cm-diameter smooth sphere is rigged with a strain gage calibrated to 
measure the force on the sphere. Estimate the wind speed in 20°C air if the 
gage measures 0.5 N.

(A) 21 m/s

(B) 25 m/s

(C) 29 m/s

(D) 33 m/s

 5. A 2.2-m-long hydrofoil with chord length of 50 cm operates 40 cm below 
the water’s surface with an angle of attack of 4°. For a speed of 15 m/s, the 
lift is nearest

(A) 75 kN

(B) 81 kN

(C) 99 kN

(D) 132 kN

 6. Estimate the takeoff speed for an aircraft with conventional airfoils if the 
aircraft with payload weighs 120 000 N and the effective wing area is 
20 m2 assuming a temperature of 30°C. An angle of attack at takeoff of 
8° is desired.

(A) 100 m/s

(B) 95 m/s

(C) 90 m/s

(D) 85 m/s

 7. Find the associated stream function if the potential function isφ = 10y  in a 
potential fl ow.

(A) 10x

(B) 10y

(C) −10x

(D) −10y
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 8. A fl ow is represented by ψ = +10 2 2ln( )x y . Find the pressure along the 
negative x-axis if atmospheric air is fl owing and p = 0 at x = −∞.

(Α) −120/x2

(B) −160/x2

(C) −200/x2

(D) −240/x2

 9. A uniform fl ow V i= 10  m/s is superimposed on a doublet with strength 
40 m3/s. The velocity distribution vθ θ( )  on the cylinder is

(A) 10sinθ
(B) 20sinθ
(C) 40sinθ
(D) 80sinθ

 10. A turbulent boundary layer is studied in a zero pressure-gradient fl ow on 
a fl at plate. Atmospheric air at 20°C fl ows over the plate at 10 m/s. How 
far from the leading edge can turbulence be expected if the free-stream 
fl uctuation intensity is low? 

(A) 60 cm

(B) 70 cm

(C) 80 cm

(D) 90 cm

 11. Given τ ρ δ0
20 14= ∞. U d dx/  where δ ν= ∞5 x U/  and U∞ = 1 m/s. The 

drag force on one side of a 2-m-wide, 4-m-long plate, over which 20°C 
atmospheric air fl ows, is nearest

(A) 0.013 N

(B) 0.024 N

(C) 0.046 N

(D) 0.067 N

 12. A laminar boundary layer of 20°C water moving at 0.8 m/s exists on one 
side of a 2-m-wide, 3-m-long fl at plate. At x = 3 m, v

max
 is nearest

(A) 0.008 m/s

(B) 0.006 m/s

(C) 0.0004 m/s

(D) 0.0002 m/s
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         Quiz No. 2
 1. Estimate the drag coeffi cient for air at 0°C moving past a 10-cm-diameter,     

4-m-high pole at 2 m/s.

 2. Atmospheric air at 20°C is fl owing at 10 m/s normal to a 10-cm-diameter, 
80-cm-long smooth cylinder with free ends. Calculate the drag force.

 3. A 220-cm-square sign is impacted straight on by a 50 m/s 10°C wind. If the 
sign is held by a single 3-m-high post imbedded in concrete, what moment 
would exist at the base of the post?

 4. A sensor is positioned downstream a short distance from a 4-cm-diameter 
cylinder in a 20°C atmospheric airfl ow. It senses vortex shedding at a 
frequency of 0.16 Hz. Estimate the airspeed.

 5. A 2000-kg airplane is designed to carry a 4000-N payload when cruising 
near sea level. For a conventional airfoil with an effective wing area of 25 
m2, estimate the stall speed at elevation of 2000 m.

 6. Find the associated potential function if the stream function is ψ = 20xy  in 
a potential fl ow.

 7. A fl ow is represented by ψ = +10 2 2ln( )x y m2/s. Find the x-component of 
the acceleration at (−4, 0).

 8. Locate any stagnation points in the fl ow represented by 

φ θ= +10 40r rcos ln  m2/s 

 9. A body is formed by the streamline that separates the source fl ow of 
strength q = 10π m2/s from a uniform fl ow parallel to the x-axis of 10 m/s. 
Locate the positive y-intercept of the body formed by the streamline that 
separates the source fl ow from the uniform fl ow.

 10. Assume a linear velocity profi le in a laminar boundary layer on a fl at plate 
with a zero pressure gradient. Find d (x). 

 11. If the walls in a wind tunnel are parallel, the fl ow will accelerate due to 
the boundary layers on each of the walls. If a wind tunnel using 20°C 
atmospheric air is square, how should one of the walls be displaced 
outward for a zero pressure gradient to exist if U = 10 m/s? Assume 
turbulent fl ow.
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 12. Atmospheric air at 20°C fl ows over a 3-m-long and 2-m-wide fl at plate at 
16 m/s. Assume a turbulent fl ow from the leading edge and calculate drag 
force on one side of the plate.

 13. A long cigar-shaped dirigible is proposed to take rich people on cruises. 
It is proposed to be 1000 m long and 150 m in diameter. How much 
horsepower is needed to move the dirigible through sea-level air at 12 m/s 
if the drag on the front and rear is neglected. Use the drag coeffi cient of 
Eq. (8.67).



Compressible Flows

Compressible fl ows occur when the density changes are signifi cant between two 
points on a streamline. Not all gas fl ows are compressible fl ows, only those that 
have signifi cant density changes. Flow around automobiles, in hurricanes, around 
aircraft during landing and takeoff, and around buildings are a few examples of 
incompressible fl ows in which the density of the air does not change more than 
3 percent between points of interest and are consequently treated as incom-
pressible fl ows. There are, however, many examples of gas fl ows in which the 
density does change signifi cantly; they include airfl ow around aircraft that fl y 
faster than a Mach number [see Eq. (3.18)] of 0.3 (about 100 m/s), through com-
pressors, jet engines, and tornados. Not considered in this chapter are compressible 
effects in liquid fl ows that give rise to water hammer and underwater compression 
waves from blasts.

CHAPTER 9

mohi_rahimi
Typewritten text
       www.fluidsoroo.ir



204 Fluid Mechanics Demystifi ed

9.1 Basics
Only compressible fl ow problems that can be solved using the integral equations will 
be considered in this chapter. The simplest of these is uniform fl ow in a conduit. 
Recall that the continuity equation, the momentum equation, and the energy equation 
(no work or heat transfer) are, respectively,

 �m A V A V= =ρ ρ1 1 1 2 2 2  (9.1)

 ∑ = −F V V�m( )2 1
 (9.2)

 0
2

2
2

1
2

2 1= − + −V V
h h  (9.3)

where the enthalpy h u p= +� /ρ  is used. If the gas can be approximated as an ideal 
gas, then the energy equation takes either of the following two forms:
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(9.5)

where we have used the thermodynamic relations 

 
Δ Δh c T c c R k
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p= = + =v
v  

(9.6)

The ideal-gas law will also be used; the form most used is

 p RT= ρ  (9.7)

We may also determine the entropy change or assume an isentropic process (Δ s = 0). 
Then, one of the following equations may be used:
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Recall that the temperatures and pressures must always be absolute quantities when 
using several of the above relations. It is always safe to use absolute temperature 
and pressure when solving problems involving a compressible fl ow.

A pressure wave with small amplitude is called a sound wave and it travels through a 
gas with the speed of sound, denoted by c. Consider the small-amplitude wave shown 
in Fig. 9.1 traveling through a conduit. In Fig. 9.2a it is moving so that a stationary 
observer sees an unsteady motion; in Fig. 9.2b the observer moves with the wave so 
that the wave is stationary and a steady fl ow is observed; Fig. 9.2c shows the control 
volume surrounding the wave. The wave is assumed to create a small differential 
change in the pressure p, the temperature T, the density r, and the velocity V in the 
gas. The continuity equation applied to the control volume provides

 ρ ρ ρAc d A c dV= + +( ) ( )  (9.10)

which simplifi es to, neglecting the higher-order term dr dv,

 ρ ρdV cd= −  (9.11)

The momentum equation in the streamwise direction is written as

 pA p dp A Ac c dV c− + = + −( ) ( )ρ  (9.12)

which simplifi es to

 dp cdV= −ρ  (9.13)

9.2 Speed of Sound

p + dp

T

p

T + dT

r + dr

dV
V = 0

(a)

c

Moving
wave

p

T

r

p + dp

T + dT

r + dr

cc + dV

(b)

Stationary
wave

pA(p + dp)A

cc + dV

(c)

r

Figure 9.1 (a) A sound wave moving through a gas; (b) the gas moving through the wave;
and (c) the control volume enclosing the wave of (b).
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Combining the continuity and momentum equations results in

 
c

dp

d
=

ρ  
(9.14)

for the small-amplitude sound waves. 
The lower-frequency (less than 18 000 Hz) sound waves travel isentropically so 

that p/r k = const  which, when differentiated, gives

 

dp

d
k

p

ρ ρ
=

 
(9.15)

The speed of sound for such waves is then

 
c

kp
kRT= =

ρ  
(9.16)

High-frequency waves travel isothermally resulting in a speed of sound of

 c RT=  (9.17)

For small-amplitude waves traveling through a liquid or a solid, the bulk modulus 
is used [see Eq. (1.17)]; it is equal to r dp/dr and has a value of 2100 MPa for water 
at 20°C. This gives a value for c of about 1450 m/s for a small-amplitude wave moving 
through water.

Source

Mach cone

Source

2a

(c)(b)

3cΔt 3cΔt

3cΔt

cΔt

2cΔt

2cΔt

cΔt

VΔt

VΔt
VΔt VΔt VΔt VΔt

cΔt

2cΔt

(a)

Figure 9.2 The propagation of sound waves from a source: (a) a stationary source; (b) a moving 
source with M < 1; (c) a moving source with M > 1.
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The Mach number, introduced in Chap. 3, is used for disturbances moving in a gas. 
It is

 
M = V

c  
(9.18)

If M < 1, the fl ow is subsonic, and if M > 1 the fl ow is supersonic. Consider the 
stationary source of disturbances displayed in Fig. 9.2a; the sound waves are shown 
after three time increments. In Fig. 9.2b the source is moving at a subsonic speed, 
which is less than the speed of sound so the source “announces” its approach to an 
observer to the right. In Fig. 9.2c the source moves at a supersonic speed, which is 
faster than the speed of the source, so an observer is unaware of the source’s 
approach if the observer is in the zone of silence, which is outside the Mach cone 
shown. From the fi gure, the Mach cone has a Mach angle given by

 
α = =− −sin sin1 1 1c

V M  
(9.19)

The small-amplitude waves discussed above are referred to as Mach waves. They 
result from sources of sound, needle-nosed projectiles, and the sharp leading edge of 
supersonic airfoils. Large-amplitude waves, called shock waves, which emanate from 
the leading edge of blunt-nosed airfoils, also form zones of silence, but the angles 
are larger than those created by the Mach waves. Shock waves will be studied in a 
subsequent section.

EXAMPLE 9.1
An electronic device is situated on the top of a hill and hears a supersonic pro-
jectile that produces Mach waves after the projectile is 500 m past the device’s 
position. If it is known that the projectile fl ies at 850 m/s, estimate how high it is 
above the device.

Solution
The Mach number is

 
M = = =

× ×
=V

c kRT

850 850

1 4 287 288
2 5

.
.

 

where a standard temperature of 288 K has been assumed since the temperature 
was not given. The Mach angle relationship allows us to write
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where h is the height above the device (refer to Fig. 9.2c). This equation can be 
solved for h to give

 h = 218 m 

9.3 Isentropic Nozzle Flow
There are numerous applications where a steady, uniform, isentropic fl ow is a good 
approximation to the fl ow in conduits. These include the fl ow through a jet engine, 
through the nozzle of a rocket, from a broken gas line, and past the blades of a turbine. 
To model such situations, consider the control volume in the changing area of the 
conduit of Fig. 9.3. The continuity equation between two sections an infi nitesimal 
distance dx apart is

 ρ ρ ρAV d A dA V dV= + + +( )( )( )  (9.20)

If only the fi rst-order terms in a differential quantity are retained, continuity takes 
the form

 

dV

V

dA

A

d+ + =ρ
ρ

0
 

(9.21)

The energy equation (9.5) is
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k

p V dV k

k
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d
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+

−
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(9.22)

dx
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T + dT
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Figure 9.3 Steady, uniform, isentropic fl ow through a conduit.
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This simplifi es to, neglecting higher-order terms,

 
VdV

k

k

dp pd+
−

− =
1

02

ρ ρ
ρ  

(9.23)

Assuming an isentropic fl ow, Eq. (9.15) allows the energy equation to take the form

 
VdV k

p
d+ =

ρ
ρ2 0

 
(9.24)

Substitute from the continuity equation (9.21) to obtain

 

dV

V

V

kp

dA

A

ρ 2

1−
⎛
⎝⎜

⎞
⎠⎟

=
 

(9.25)

or, in terms of the Mach number,

 

dV

V

dA

A
M2 1−( ) =

 
(9.26)

This equation applies to a steady, uniform, isentropic fl ow. 
There are several observations that can be made from an analysis of Eq. (9.26). 

They are:

• For a subsonic fl ow in an expanding conduit (M < 1 and dA > 0), the fl ow is 
decelerating (dV < 0).

• For a subsonic fl ow in a converging conduit (M < 1 and dA < 0), the fl ow is 
accelerating (dV > 0).

• For a supersonic fl ow in an expanding conduit (M > 1 and dA > 0), the fl ow 
is accelerating (dV > 0).

• For a supersonic fl ow in a converging conduit (M > 1 and dA < 0), the fl ow 
is decelerating (dV < 0).

• At a throat where dA = 0, either M = 1 or dV = 0 (the fl ow could be accelerating 
through M = 1, or it may reach a velocity such that dV = 0).

Observe that a nozzle for a supersonic fl ow must increase in area in the fl ow 
direction, and a diffuser must decrease in area, opposite to a nozzle and diffuser 
for a subsonic fl ow. So, for a supersonic fl ow to develop from a reservoir where 
the velocity is zero, the subsonic fl ow must fi rst accelerate through a converging 
area to a throat, followed by continued acceleration through an enlarging area. 
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The nozzles on a rocket designed to place satellites in orbit are constructed using 
such converging-diverging geometry, as shown in Fig. 9.4.

The energy and continuity equations can take on particularly helpful forms for 
the steady, uniform, isentropic fl ow through the nozzle of Fig. 9.4. Apply the energy 
equation (9.4) with � �Q WS= = 0  between the reservoir and some location in the 
nozzle to obtain

 
c T

V
c Tp p0

2

2
= +

 
(9.27)

Any quantity with a zero subscript refers to a stagnation point where the velocity is 
zero, such as in the reservoir. Using several thermodynamic relations [Eqs. (9.6), 
(9.9), (9.16), and (9.18)], Eq. (9.27) can be put in the forms
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If the above equations are applied at the throat (the critical area signifi ed by an 
asterisk (*) superscript, where M = 1), the energy equation takes the forms
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(9.29)
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M > 1

Figure 9.4 A supersonic nozzle.
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The critical area is often referenced even though a throat does not exist, as in Table 
D.1. For air with k = 1.4, the equations above provide

 
T T p p* . * . * .= = =0 8333 0 5283 0 63400 0 0

ρ ρ
 

(9.30)

The mass fl ux through the nozzle is of interest and is given by

 
�m AV
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RT
A kRT p
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RT
A= = × × =ρ M M

 
(9.31)

With the use of Eq. (9.28), the mass fl ux, after applying some algebra, can be 
expressed as
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(9.32)

If the critical area is selected where M = 1, this takes the form
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(9.33)

which, when combined with Eq. (9.32), provides
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(9.34)

This ratio is included in the isentropic fl ow Table D.1 for air. The table can be used 
in place of the above equations.

Now we will discuss some features of the above equations. Consider a converging 
nozzle connecting a reservoir with a receiver, as shown in Fig. 9.5. If the reservoir 
pressure is held constant and the receiver pressure reduced, the Mach number at the 
exit of the nozzle will increase until M

e
 = 1 is reached, indicated by the left curve in 

the fi gure. After M
e
 = 1 is reached at the nozzle exit for p

r
 = 0.5283p

0
, the condition 

of choked fl ow occurs and the velocity throughout the nozzle cannot change with 
further decreases in p

r
. This is due to the fact that pressure changes downstream of 

the exit cannot travel upstream to cause changes in the fl ow conditions.
The right curve of Fig. 9.5b represents the case when the reservoir pressure is 

increased and the receiver pressure is held constant. When M
e
 = 1, the condition of 

choked fl ow also occurs; but Eq. (9.33) indicates that the mass fl ux will continue to 
increase as p

0
 is increased. This is the case when a gas line ruptures.
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It is interesting that the exit pressure p
e

is able to be greater than the receiver 
pressure p

r
. Nature allows this by providing the streamlines of a gas the ability to 

make a sudden change of direction at the exit and expand to a much greater area 
resulting in a reduction of the pressure from p

e
 to p

r
.

The case of a converging-diverging nozzle allows a supersonic fl ow to occur, pro-
viding the receiver pressure is suffi ciently low. This is shown in Fig. 9.6 assuming a 
constant reservoir pressure with a decreasing receiver pressure. If the receiver pressure 

Me < 1

Choked
flow
Me =1

Choked
flow

Me = 1

p
e

< p
r

pr < pe

Decreasing pr
with p

0
 const Increasing p

0
with pr const

0.5283 1.8931.0

pr /p
0

p
0
/pr

(a)

(b)

m
.

pr

Vepe

T
0

p
0

V
0 = 0

r
0

Figure 9.5 (a) A converging nozzle and (b) the pressure variation in the nozzle.
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D
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Figure 9.6 A converging-diverging nozzle with reservoir pressure fi xed.
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is equal to the reservoir pressure, no fl ow occurs, represented by curve A. If p
r
 is 

slightly less than p
0
, the fl ow is subsonic throughout, with a minimum pressure at the 

throat, represented by curve B. As the pressure is reduced still further, a pressure is 
reached that results in M = 1 at the throat with subsonic fl ow throughout the remainder 
of the nozzle.

There is another receiver pressure substantially below that of curve C that also 
results in isentropic fl ow throughout the nozzle, represented by curve D; after the 
throat the fl ow is supersonic. Pressures in the receiver in between those of curve C 
and curve D result in non-isentropic fl ow (a shock wave occurs in the fl ow) and will 
be considered in the next section. If p

r
 is below that of curve D, the exit pressure p

e
 

is greater than p
r
. Once again, for receiver pressures below that of curve C, the mass 

fl ux remains constant since the conditions at the throat remain unchanged. 
It may appear that the supersonic fl ow will tend to separate from the nozzle, but just 

the opposite is true. A supersonic fl ow can turn very sharp angles, as will be observed in 
Sec. 9.6, since nature provides expansion fans that do not exist in subsonic fl ows. To 
avoid separation in subsonic nozzles, the expansion angle should not exceed 10°. For 
larger angles, vanes are used so that the angle between the vanes does not exceed 10°.

EXAMPLE 9.2
Air fl ows from a reservoir maintained at 300 kPa absolute and 20°C into a receiver 
maintained at 200 kPa absolute by passing through a converging nozzle with an 
exit diameter of 4 cm. Calculate the mass fl ux through the nozzle. Use (a) the 
equations and (b) the isentropic fl ow table.

Solution
(a) The receiver pressure that would give M = 1 at the nozzle exit is

 
p p

r
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The receiver pressure is greater than this so M
e
 < 1. The second equation of

Eq. (9.28) can be put in the form
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This gives M = 0.784. The mass fl ux is found from Eq. (9.32) to be
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For the units to be consistent, the pressure must be in Pa and R in J/kg · K. 
(b) Now use Table D.1. For a pressure ratio of p/p

0
 = 200/300 = 0.6667, the Mach 

number is found by interpolation to be 

M e = −
−

× − +0 6821 0 6667

0 6821 0 6560
0 8 0 76 0

. .

. .
( . . ) .776 0 784= .

To fi nd the mass fl ux the velocity must be known which requires the temperature 
since V kRT= M . The temperature is interpolated (similar to the interpolation 
for the Mach number) from Table D.1 to be Te = × =0 8906 293 261. K. The 
velocity and density are then

V kRT= = × × =M m/s0 784 1 4 287 261 254. .

 
ρ = =

×
=p

RT

200

0 287 261
2 67

.
. kg/m3

 

The mass fl ux is found to be

�m AV= = × × × =ρ π2 67 0 02 254 0 8522. . . kg/s

9.4 Normal Shock Waves
Shock waves are large-amplitude waves that travel in a gas. They emanate from the 
wings of a supersonic aircraft, from a large explosion, from a jet engine, and ahead 
of the projectile in a gun barrel. They can be oblique waves or normal waves. First, 
we will consider the normal shock wave, as shown in Fig. 9.7. In this fi gure it is 
stationary so that a steady fl ow exists. If V

1
 were superimposed to the left, the shock 

V
1 V

2

p
2

p
1

Control volume

r
2

r
1

Figure 9.7 A stationary shock wave.
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would be traveling in stagnant air with velocity V
1
 and the induced velocity behind 

the shock wave would be (V
1
 − V

2
). The shock wave is very thin, on the order of

10−4 mm, and in that short distance large pressure changes occur causing enormous 
energy dissipation. The continuity equation with A

1
 = A

 2
 is

 ρ ρ1 1 2 2V V=  (9.35)

The energy equation with � �Q WS= = 0 takes the form

 

V V k
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2
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ρ ρ  

(9.36)

The only forces in the momentum equation are pressure forces so

 p p V V V1 2 1 1 2 1− = −ρ ( )  (9.37)

where the areas have divided out since A
1
 = A

2
. Assuming that the three quantities 

r
1
, p

1
, and V

1
 before the shock wave are known, the above three equations allow us 

to solve for three unknowns r
2
, p

2
, and V

2
 since, for a given gas, k is known. 

Rather than solve the above three equations simultaneously, we write them in 
terms of the Mach numbers M

1
 and M

2
, and put them in more convenient forms. 

First, the momentum equation (9.37), using Eq. (9.35) and V pk2 = M /2 ρ, can be 
written as
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(9.38)

In like manner, the energy equation (9.36), with p RT= ρ  and V kRT2 = M2 , can be 
written as
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The continuity equation (9.35) with ρ = p RT/  and V M kRT=  becomes
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(9.40)
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If the pressure and temperature ratios from Eqs (9.38) and (9.39) are substituted 
into Eq. (9.40) the downstream Mach number is related to the upstream Mach num-
ber by (the algebra to show this is complicated)
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This allows the momentum equation (9.38) to be written as 
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and the energy equation (9.39) as
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For air, the preceding equations simplify to
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(9.44)

Several observations can be made from these three equations:

• If M
1
 = 1, then M

2
 = 1 and no shock wave exists.

• If M
1 
> 1, then M

2
 < 1 and supersonic fl ow is always converted to a 

subsonic fl ow when it passes through a normal shock wave.

• If M
1
 < 1, then M

2
 > 1 and a subsonic fl ow appears to be converted to a 

supersonic fl ow. This is impossible since it results in a positive production 
of entropy, a violation of the second law of thermodynamics.

Several normal shock-fl ow relations for air have been presented in Table D.2. 
The use of that table allows one to avoid using Eq. (9.44). In addition, the ratio 
p

02
 /p

01
 of the stagnation point pressures in front of and behind the shock wave are 

listed.
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Return to the converging-diverging nozzle and focus attention on the fl ow below 
curve C of Fig. 9.6. If the receiver pressure decreases to p

r
/p

0
 = a in Fig. 9.8, a normal 

shock wave would be positioned somewhere inside the nozzle as shown. If the receiver 
pressure decreased still further, there would be some ratio p

r
/p

0
 = b that would posi-

tion the shock wave at the exit plane of the nozzle. Pressure ratios c and d would result 
in oblique shock-wave patterns similar to those shown. Pressure ratio e is associated 
with isentropic fl ow throughout, and pressure ratio f would provide an exit pressure 
greater than the receiver pressure resulting in a billowing out, as shown, of the exiting 
fl ow, as seen on the rockets that propel satellites into space.

EXAMPLE 9.3
A normal shock wave travels at 600 m/s through stagnant 20°C air. Estimate the 
velocity induced behind the shock wave. (a) Use the equations and (b) use the 
normal shock-fl ow table D.2. Refer to Fig. 9.7.

Solution
Superimpose a velocity of 600 m/s so that the shock wave is stationary and V

1
 = 

600 m/s, as displayed in Fig. 9.7. The upstream Mach number is
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Figure 9.8 Flοw with shοck waves in a nοzzle.
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(a) Using the equations, the downstream Mach number and temperature are, 
respectively,
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The velocity behind the shock wave is then

 V kRT2 2 0 628 1 4 287 438 263= = × × × =M m/s2 . .  

If V
1
 is superimposed to the left in Fig. 9.7, the induced velocity is

V V Vinduced m/s= − = − =1 2 600 263 337

which would act to the left, in the direction of the moving shock wave.
(b) Table D.2 is interpolated at M

1
 = 1.75 to fi nd 

 
M2 = −

−
× − +1 75 1 72

1 76 1 72
0 6257 0 6355 0 635

. .

. .
( . . ) . 55 0 6282= .
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The velocity V
2
 is then

 V kRT2 2 0 628 1 4 287 438 263= = × × × =M m/s2 . .  

and the induced velocity due to the shock wave is

V V Vinduced m/s= − = − =1 2 600 263 337

EXAMPLE 9.4
Air fl ows from a reservoir maintained at 20°C and 200 kPa absolute through a 
converging-diverging nozzle with a throat diameter of 6 cm and an exit diameter 
of 12 cm to a receiver. What receiver pressure is needed to locate a shock wave 
at a position where the diameter is 10 cm? Refer to Fig. 9.8.
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Solution
Let’s use the isentropic-fl ow table D.1 and the normal shock-fl ow table D.2. At 
the throat for this supersonic fl ow M

t
= 1. The Mach number just before the 

shock wave is interpolated from Table D.1 where A A1
2 210 6 2 778/ /* .= =  to be

 M
1
 = 2.556 

From Table D.2, 

 
M2 = = ∴ = × =0 5078 0 4778 0 4778 200 95 5502

01
02. . . .

p

p
p kPa

 

since the stagnation pressure does not change in the isentropic fl ow before the 
shock wave so that p01  = 200 kPa. From just after the shock wave to the exit, 
isentropic fl ow again exists so that from Table D.1 at M

2
 = 0.5078

 

A

A
2 1 327
*

.=
 

We have introduced an imaginary throat between the shock wave and the exit of 
the nozzle. The exit area A

e
 is introduced by
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Using Table D.1 at this area ratio (make sure the subsonic part of the table is used), 
we fi nd

 
M ande

e

e
e

p

p
p= = ∴ = × =0 3223 0 9305 0 9305 95 55 88

0

. . . . ..9 kPa
 

using p pe0 02=  for the isentropic fl ow after the shock wave. The exit pressure is 
equal to the receiver pressure for this isentropic subsonic fl ow. 

Oblique shock waves form on the leading edge of a supersonic sharp-edged airfoil or 
in a corner, as shown in Fig. 9.9. A steady, uniform plane fl ow exists before and after 
the shock wave. The oblique shock waves also form on axisymmetric projectiles.

9.5 Oblique Shock Waves
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The oblique shock wave turns the fl ow so that V
2
 is parallel to the plane surface. 

Another variable, the angle through which the fl ow turns, is introduced but the addi-
tional tangential momentum equation allows a solution. Consider the control volume of 
Fig. 9.10 surrounding the oblique shock wave. The velocity vector V

1
 is assumed to be 

in the x-direction and the oblique shock wave turns the fl ow through the wedge angle or 
defl ection angle q so that V

2
 is parallel to the wall. The oblique shock wave makes an 

angle of b with V
1
. The components of the velocity vectors are shown normal and tan-

gential to the oblique shock. The tangential components of the velocity vectors do not 
cause fl uid to fl ow into or out of the control volume, so continuity provides

 ρ ρ1 1 2 2V Vn n=  (9.45)

The pressure forces act normal to the control volume and produce no net force tan-
gential to the oblique shock. This allows the tangential momentum equation to take 
the form

 � �m V m Vt t1 1 2 2=  (9.46)
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Figure 9.9 Οblique shοck waves: (a) fl οw οver a wedge and (b) fl οw in a cοrner.
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Figure 9.10 Oblique shock-wave control volume.
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Continuity requires � �m m1 2=  so that

 V Vt t1 2=  (9.47)

The momentum equation normal to the oblique shock is

 p p V Vn n1 2 2 2
2

1 1
2− = −ρ ρ  (9.48)

The energy equation, using V V Vn t
2 2 2= + , can be written in the form
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since the tangential velocity terms cancel. 
Observe that the tangential velocity components do not enter the three Eqs. (9.45), 

(9.48), and (9.49). They are the same three equations used to solve the normal shock-
wave problem. So, the components V

1n
 and V

2n
 can be replaced with V

1
 and V

2
, respec-

tively, of the normal shock-wave problem and a solution obtained. Table D.2 may also 
be used. We also replace M

1n
 and M

2n
 with M

1
 and M

2
 in the equations and table. 

To often simplify a solution, we relate the oblique shock angle b to the defl ection 
angle q. This is done by using Eq. (9.45) to obtain
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Using Eqs. (9.42) and (9.43) this density ratio can be written as
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Using this density ratio in Eq. (9.50) allows us to write
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(9.52)

With this relationship the oblique shock angle b can be found for a given incoming 
Mach number and wedge angle q.  A plot of Eq. (9.52) is useful to avoid a trial-and-
error solution. It is included as Fig. 9.11. Three observations can be made by study-
ing the fi gure.
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• For given Mach number M
1
 and wedge angle q there are two possible 

oblique shock angles b. The larger one is the “strong” oblique shock wave 
and the smaller one is the “weak” oblique shock wave.

• For a given wedge angle q there is a minimum Mach number for which 
there is only one oblique shock angle b. 

• If the Mach number is less than the minimum for a particular q, but 
greater than one, the shock wave is detached as shown in Fig. 9.12. Also, 
for a given M

1
 there is a suffi ciently large q that will result in a detached 

shock wave.

The required pressure rise determines if a weak shock or a strong shock exists. 
The pressure rise is determined by fl ow conditions. 

For a detached shock wave around a blunt body or a wedge, a normal shock wave 
exists on the stagnation streamline; the normal shock is followed by a strong oblique 
shock, then a weak oblique shock, and fi nally a Mach wave, as shown in Fig. 9.12. 
The shock wave is always detached on a blunt object.
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Figure 9.11 Οblique shοck wave angle b related tο wedge angle q and Mach
number M

1
 fοr air.
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EXAMPLE 9.5
Air at 30°C fl ows around a wedge with an included angle of 60° (see Fig. 9.9a). 
An oblique shock emanates from the wedge at an angle of 50°. Determine the 
approach velocity of the air. Also fi nd M

2 
and T

2
.

Solution
From Fig. 9.11 the Mach number, at q = 30° and b = 50°, is

 M1 = 3 1.  

The velocity is then

V kRT1 3 1 1 4 287 303 1082= = × × × =M m/s1 . .

If Eq. (9.52) were used for greater accuracy, we have
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The velocity would be V
1
 = 1117 m/s.

To fi nd M
2
, the approaching normal velocity and Mach number are

V Vn n1 1 1117 50 856
856

1 4 28
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×
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.
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77 303
2 453

×
= .
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shock

Strong
shock

Weak
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Figure 9.12 Detached shock waves around (a) a plane, blunt object and (b) a wedge.
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From Table D.2 interpolation provides M
2n

 = 0.5176 so that

M
M

2
2

50 30

0 5176

20
1 513=

° − °
=

°
=n

sin( )

.

sin
.

The temperature behind the oblique shock is interpolated to be

 T T2 1 2 092 303 2 092 634= × = × =. . K  

9.6 Expansion Waves
Supersonic fl ow exits a nozzle (the pressure ratio f in Fig. 9.8), and billows out into a 
large exhaust plume. Also, supersonic fl ow does not separate from the wall of a nozzle 
that expands quite rapidly, as shown in Fig. 9.8. How is this accomplished? Consider 
the possibility that a single fi nite wave, such as an oblique shock, is able to turn the 
fl ow around the convex corner, as shown in Fig. 9.13a. From the tangential momentum 
equation, the tangential component of velocity must remain the same on both sides of 
the fi nite wave. For this to be true, V V2 > 1. As before, this increase in velocity as the 
fl uid fl ows through a fi nite wave requires an increase in entropy, a violation of the 
second law of thermodynamics, making a fi nite wave an impossibility.

A second possibility is to allow an infi nite fan of Mach waves, called an expan-
sion fan, emanating from the corner, as shown in Fig. 9.13b. This is an ideal isen-
tropic process so the second law is not violated; such a process may be approached 
in a real application. Let’s consider the single infi nitesimal Mach wave displayed in 
Fig. 9.14, apply our fundamental laws, and then integrate around the corner. Since 
the tangential velocity components are equal, the velocity triangles yield

 V V V dV dt = = + +cos ( )cos( )μ μ θ  (9.53)

(a) A single finite wave (b) An infinite number
      of Mach waves

V2

V1

V2

M2

M1

Finite
wave

V2n

Expansion
fanV1t

V1
q q

Figure 9.13 Supersonic fl ow around a convex corner.
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This can be written as1, neglecting higher-order terms,

 Vd dVθ μ μsin cos=  (9.54)

Substitute sin μ = 1/M  [see Eq. (9.19)] and cos /μ = −M M,2 1  to obtain
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dV

V
θ = −M2 1

 
(9.55)

Differentiate the equation V kRT= M  and put in the form
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The energy equation V kRT k2 2 1/ / const+ − =( )  can also be differentiated to yield
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Combine Eqs. (9.56) and (9.57) to obtain
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2
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(9.58)

1Recall that cos(m + dq) = cos m cos  dq − sin m sin  dq = cos m − dq sin m since cos dq  ≈ 1 and 
sin dq ≈ dq.

Figure 9.14 A Mach wave in an expansion fan.
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Substitute this into Eq. (9.55) to obtain a relationship between q and M:
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This is integrated from q = 0 and M = 1 to a general angle q, called the Prandtl-
Meyer function, and Mach number M (this would be M

2
 in Fig. 9.13b) to fi nd that
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(9.60)

The solution to this relationship is presented for air in Table D.3 to avoid a trial-and-
error solution for M given the angle q. If the pressure or temperature is desired, the 
isentropic fl ow table can be used. The Mach waves that allow the gas to turn the 
corner are sometimes referred to as expansion waves.

Observe from Table D.3 that the expansion fan that turns the gas through the 
angle q results in M = 1 before the fan to a supersonic fl ow after the fan. The gas 
speeds up as it turns the corner and it does not separate. A slower moving subsonic 
fl ow would separate from the corner and would slow down. If M = ∞ is substituted 
into Eq. (9.60), θ = °130 5. ,  which is the maximum angle through which the fl ow 
could possibly turn. This shows that turning angles greater than 90° are possible, a 
rather surprising result.

EXAMPLE 9.6
Air at 150 kPa and 140°C fl ows at M = 2 and turns a convex corner of 30°. Estimate 
the Mach number, pressure, temperature, and velocity after the corner.

Solution
Table D.3 assumes the air is initially at M = 1. So, assume the fl ow originates 
from M = 1 and turns a corner to M

1
 = 2 and then a second corner to M

2
, as 

shown. From Table D.3, an angle of 26.4° is required to accelerate the fl ow from 
M = 1 to M = 2. Add another 30° to 26.4° and at q  = 56.4° we fi nd that 

M
2
 = 3.37

V2

M2

M1 = 2
M = 1

26.4° 30°
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Using the isentropic fl ow table D.1, the entries from the reservoir to state 1 and 
also to state 2 can be used to fi nd
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The velocity after the corner is then

V kRT2 2 3 37 1 4 287 227 1018= = × × × =M m/s2 . .

Quiz No. 1
 1. Two rocks are slammed together by a friend on one side of a lake. A 

listening device picks up the wave generated 0.45 s later. The distance 
across the lake is nearest

(A) 450 m

(B) 550 m

(C) 650 m

(D) 750 m

 2. The Mach number for a projectile fl ying at 10 000 m at 200 m/s is

(A) 0.62

(B) 0.67

(C) 0.69

(D) 0.74

 3. A supersonic aircraft passes 200 m overhead on a day when the temperature 
is 26°C. Estimate how far the aircraft is from you when you hear its sound 
if its Mach number is 1.68.

(A) 245 m

(B) 275 m

(C) 315 m

(D) 335 m
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 4. A converging nozzle with exit area of 10 cm2 is attached to a reservoir 
maintained at 250 kPa absolute and 20°C. If the receiver pressure is 
maintained at 150 kPa absolute, the mass fl ux is nearest

(A) 0.584 kg/s

(B) 0.502 kg/s

(C) 0.428 kg/s

(D) 0.386 kg/s

 5. Air fl ows through a converging-diverging nozzle attached from a reservoir 
maintained at 400 kPa absolute and 20°C to a receiver. If the throat and exit 
diameters are 10 and 24 cm, respectively, the receiver pressure that will just 
result in supersonic fl ow throughout is nearest

(A) 6.8 kPa

(B) 9.2 kPa

(C) 16.4 kPa 

(D) 28.2 kPa

 6. The temperature, pressure, and velocity before a normal shock wave in air 
are 18°C, 100 kPa absolute, and 600 m/s, respectively. The velocity after 
the shock wave is nearest

(A) 212 m/s

(B) 249 m/s

(C) 262 m/s

(D) 285 m/s

 7. A large explosion occurs on the earth’s surface producing a shock wave 
that travels radially outward. At a particular location the Mach number of 
the wave is 2.0. Determine the induced velocity behind the shock wave if 
T1

 = 15°C.

(A) 502 m/s

(B) 425 m/s

(C) 368 m/s

(D) 255 m/s
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 8. Air fl ows from a reservoir through a nozzle into a receiver. The reservoir is 
maintained at 400 kPa absolute and 20°C. The nozzle has a 10-cm-diameter 
throat and a 20-cm-diameter exit. The receiver pressure needed to locate a 
shock wave at the exit is nearest

(A) 150 kPa 

(B) 140 kPa

(C) 130 kPa

(D) 120 kPa

 9. A supersonic airfl ow changes direction 20° due to a sudden corner
(see Fig. 9.9b). If T

1
 = 40°C, p

1
 = 60 kPa absolute, and V

1
 = 900 m/s, 

calculate p
2
 assuming a weak shock.

(A) 164 kPa

(B) 181 kPa

(C) 192 kPa

(D) 204 kPa

 10. An airfl ow with a Mach number of 2.4 turns a convex corner of 40°. If the 
temperature and pressure are 5°C and 60 kPa absolute, respectively, the 
Mach number after the corner is nearest

(A) 5

(B) 3

(C) 2

(D) 1 

Quiz No. 2
 1. An underwater animal generates a signal that travels through water until it 

hits an object and then echoes back to the animal 0.46 s later. How far is the 
animal from the object?

 2. A bolt of lightning lights up the sky and 1.5 s later you hear the thunder. 
How far did the lightning strike from your position?

 3. A supersonic aircraft passes 200 m overhead on a day when the temperature 
is 26°C. Estimate how far the aircraft is from you when you hear its sound 
if its Mach number is 3.49.



230 Fluid Mechanics Demystifi ed

 4. A small-amplitude wave travels through the 15°C atmosphere creating a 
pressure rise of 5 Pa. Estimate the temperature rise across the wave and the 
induced velocity behind the wave.

 5. A converging nozzle with exit area of 10 cm2 is attached to a reservoir 
maintained at 250 kPa absolute and 20°C. Calculate the mass fl ux if the 
receiver pressure is maintained at 100 kPa absolute.

 6. Air fl ows from a converging-diverging nozzle from a reservoir maintained 
at 400 kPa absolute and 20°C through a 12-cm-diameter throat. At what 
diameter in the diverging section will M = 2? 

 7. The temperature and pressure before a normal shock wave in air are 20°C 
and 400 kPa absolute, respectively. The Mach number after the shock wave 
is 0.5. Calculate the pressure and velocity after the shock.

 8. Air fl ows from a reservoir maintained at 400 kPa absolute and 20°C out 
a nozzle with a 10-cm-diameter throat and a 20-cm-diameter exit into a 
receiver. Estimate the receiver pressure needed to locate a shock wave at a 
diameter of 16 cm.

 9. A supersonic airfl ow changes direction 20° due to a sudden corner 
(see Fig. 9.9b). If T

1
 = 40°C, p

1
 = 60 kPa absolute, and V

1
 = 900 m/s, 

calculate p
2
 and V

2
 assuming a strong shock.

 10. An airfl ow with M = 3.6 is desired by turning a 20°C-supersonic fl ow with 
a Mach number of 1.8 around a convex corner. If the upstream pressure is 
40 kPa absolute, what angle should the corner possess? What is the velocity 
after the corner?



Units and 
Conversions

APPENDIX A

Table A.1 English Units, SI Units, and Their Conversion Factors

Quantity English Units International System* SI Conversion Factor

Length inch millimeter 1 in = 25.4 mm

foot meter 1 ft = 0.3048 m

mile kilometer 1 mi = 1.609 km

Area square inch square centimeter 1 in2 = 6.452 cm2

square foot square meter 1 ft2 = 0.09290 m2

Volume cubic inch cubic centimeter 1 in3 = 16.39 cm3

cubic foot cubic meter 1 ft3 = 0.02832 m3

gallon 1 gal = 0.003789 m3

Mass pound-mass kilogram 1 lbm = 0.4536 kg
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Table A.1 English Units, SI Units, and Their Conversion Factors (Continued)

Quantity English Units International System* SI Conversion Factor

slug 1 slug = 14.59 kg

Density slug/cubic foot kilogram/cubic meter 1 slug/ft3 = 515.4 kg/m3

Force pound-force newton 1 lb = 4.448 N

Work/torque foot-pound newton-meter 1 ft-lb = 1.356 N·m

Pressure pound/square inch newton/square meter 1 psi = 6895 Pa

pound/square foot 1 psf = 47.88 Pa

Temperature degree Fahrenheit degree Celsius °F = 9/5°C + 32

degree Rankine kelvin °R = 9/5K

Energy British thermal unit joule 1 Btu = 1055 J

calorie 1 cal = 4.186 J

foot-pound 1 ft-lb = 1.356 J

Power horsepower watt 1 hp = 745.7 W

foot-pound/second 1 ft-lb/sec = 1.356W

Velocity foot/second meter/second 1 ft/sec = 0.3048 m/s

Acceleration foot/second squared meter/second squared 1 ft/sec2 = 0.3048 m/s2

Frequency cycle/second hertz 1 cps = 1.000 Hz

Viscosity pound-sec/square foot newton-sec/square meter 1 lb-sec/ft2 = 47.88 N · s/m2

*The reversed initials come from the French form of the name: Systeme International.

Table A.2 Conversions of Units

Length Force Mass Velocity

1 cm = 0.3937 in 1 lb = 0.4536 kg 1 oz = 28.35 g 1 mph = 1.467 ft/sec

1 m = 3.281 ft 1 lb = 0.4448×106 dyn 1 lb = 0.4536 kg 1 mph = 0.8684 knot

l km = 0.6214 mi 1 lb = 32.17 pdl 1 slug = 32.17 lb 1 ft/sec = 0.3048 m/s

1 in = 2.54 cm 1 kg = 2.205 lb 1 slug = 14.59 kg 1 m/s  = 3.281 ft/sec

1 ft = 0.3048 m 1 N = 0.2248 lb 1 kg = 2.205 lb 1 km/h = 0.278 m/s

1 mi = 1.609 km 1 dyn = 2.248×10−6 lb 1 kg = 0.06852 slug

1 mi = 5280 ft 1 lb = 4.448 N
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Table A.2 Conversion of Units  (Continued)

Work, Energy, and Power Pressure Volume

1 Btu = 778.2 ft-lb 1 psi = 2.036 in Hg 1 ft3 = 28.32 L

1 J = 107 ergs 1 psi = 27.7 in H
2
O 1 ft3 = 7.481 gal (U.S.)

1 J = 0.7376 ft-lb 14.7 psi = 22.92 in Hg 1 gal (U.S.) = 231 in3

1 cal = 3.088 ft-lb 14.7 psi = 33.93 ft H
2
O 1 gal (Brit.) = 1.2 gal (U.S.)

1 cal = 0.003968 Btu 14.7 psi =  1.013 bar 1 m3 = 1000 L

1 kWh = 3413 Btu 1 kg/cm2 = 14.22 psi 1 ft3 = 0.02832 m3

1 Btu = 1.055 kJ 1 in Hg = 0.4912 psi 1 m3 = 35.31 ft3

1 ft-lb =1.356 J 1 ft H
2
O = 0.4331 psi

1 hp = 550 ft-lb/sec 1 psi = 6895 Pa

1 hp = 0.7067 Btu/sec 1 psf = 47.88 Pa

1 hp = 0.7455 kW 105 Pa = 1 bar

1 W = 1 J/s 1 kPa = 0.145 psi

1 W = 1.0 × 107 dyn-cm/s

1 erg = 10−7 J

1 quad = 1015 Btu

1 therm = 105 Btu  

Viscosity Flow Rate

1 stoke = 10−4 m2/s 1 ft3/min = 4.719 × 10– 4 m3/s

1 poise = 0.1 N · s/m2 1 ft3/sec = 0.02832 m3/s

1 lb-sec/ft2 = 47.88 N · s/m2 1 m3/s = 35.31 ft3/sec

1 ft2/sec = 0.0929 m2/s 1 gal/min = 0.002228 ft3/sec

1 ft3/sec = 448.9 gal/min
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Fluid Properties

APPENDIX C

Table C.1 Properties of Water

Temperature 
T (°C)

Density
q (kg/m3)

Viscosity 
l (N·s/m2)

Kinematic
Viscosity 

n (m2/s)

Surface
Tension 
s (N/m)

Vapor 
Pressure 
pv (kPa)

Bulk Modulus 
B (Pa)

0 999.9 1.792 × 10−3 1.792 × 10−6 0.0762 0.610 204 × 107

5 1000.0 1.519 1.519 0.0754 0.872 206

10 999.7 1.308 1.308 0.0748 1.13 211

15 999.1 1.140 1.141 0.0741 1.60 214

20 998.2 1.005 1.007 0.0736 2.34 220

30 995.7 0.801 0.804 0.0718 4.24 223

40 992.2 0.656 0.661 0.0701 3.38 227

50 988.1 0.549 0.556 0.0682 12.3 230

60 983.2 0.469 0.477 0.0668 19.9 228

70 977.8 0.406 0.415 0.0650 31.2 225

80 971.8 0.357 0.367 0.0630 47.3 221

90 965.3 0.317 0.328 0.0612 70.1 216

100 958.4 0.284 × 10−3 0.296 × 10−6 0.0594 101.3 207 × 107

mohi_rahimi
Typewritten text
www.fluidsoroo.ir
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Table C.1E English Properties of Water

Temperature
(°F)

Density
(slug/ft3)

Viscosity
(lb-sec/ft2)

Kinematic
Viscosity
(ft2/sec)

Surface
Tension
(lb/ft)

Vapor
Pressure

(psi)

Bulk
Modulus

(psi)

32 1.94 3.75 × 10 −5 1.93 × 10 −5 0.518 × 10 −2 0.089 293 000

40 1.94 3.23 1.66 0.514 0.122 294 000

50 1.94 2.74 1.41 0.509 0.178 305 000

60 1.94 2.36 1.22 0.504 0.256 311 000

70 1.94 2.05 1.06 0.500 0.340 320 000

80 1.93 1.80 0.93 0.492 0.507 322 000

90 1.93 1.60 0.83 0.486 0.698 323 000

100 1.93 1.42 0.74 0.480 0.949 327 000

120 1.92 1.17 0.61 0.465 1.69 333 000

140 1.91 0.98 0.51 0.454 2.89 330 000

160 1.90 0.84 0.44 0.441 4.74 326 000

180 1.88 0.73 0.39 0.426 7.51 318 000

200 1.87 0.64 0.34 0.412 11.53 308 000

212 1.86 0.59 × 10 −5 0.32 × 10 −5 0.404 × 10 −2 14.7 300 000

Table C.2 Properties of Air at Atmospheric Pressure

Temperature 
T (°C)

Density
r (kg/m3)

Viscosity 
μ (N·s/m2)

Kinematic
Viscosity n (m2/s)

Velocity of 
Sound c (m/s)

−50 1.582 1.46 × l0 −5 0.921 × 10 −5 299

−30 1.452 1.56 1.08 312

−20 1.394 1.61 1.16 319

−10 1.342 1.67 1.24 325

0 1.292 1.72 1.33 331

10 1.247 1.76 1.42 337

20 1.204 1.81 1.51 343

30 1.164 1.86 1.60 349

40 1.127 1.91 1.69 355

50 1.092 1.95 1.79 360

60 1.060 2.00 1.89 366

70 1.030 2.05 1.99 371

80 1.000 2.09 2.09 377

90 0.973 2.13 2.19 382

100 0.946 2.17 2.30 387

200 0.746 2.57 3.45 436

300 0.616 2.93 × 10 −5 4.75 × 10 −5 480
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Table C.2E English Properties of Air at Atmospheric Pressure

Temperature 
(°F)

Density
(slug/ft3)

Viscosity 
(lb-sec/ft2)

Kinematic
Viscosity (ft2/sec)

Velocity of 
Sound (ft/sec)

−20 0.00280 3.34 × 10 −7 11.9 × 10 −5 1028

0 0.00268 3.38 12.6 1051

20 0.00257 3.50 13.6 1074

40 0.00247 3.62 14.6 1096

60 0.00237 3.74 15.8 1117

68 0.00233 3.81 16.0 1125

80 0.00228 3.85 16.9 1138

100 0.00220 3.96 18.0 1159

120 0.00213 4.07 18.9 1180

160 0.00199 4.23 21.3 1220

200 0.00187 4.50 24.1 1258

300 0.00162 4.98 30.7 1348

400 0.00144 5.26 36.7 1431

1000 0.000844 7.87 × 10 −7 93.2 × 10 −5 1839

Table C.3 Properties of the Standard Atmosphere

Altitude (m) Temperature (K) Pressure (kPa) Density (kg/m3)
Velocity of Sound 

(m/s)

0 288.2 101.3 1.225 340

500 284.9 95.43 1.167 338

1000 281.7 89.85 1.112 336

2000 275.2 79.48 1.007 333

4000 262.2 61.64 0.8194 325

6000 249.2 47.21 0.6602 316

8000 236.2 35.65 0.5258 308

10 000 223.3 26.49 0.4136 300

12 000 216.7 19.40 0.3119 295

14 000 216.7 14.17 0.2278 295

16 000 216.7 10.35 0.1665 295

18 000 216.7 7.563 0.1216 295

20 000 216.7 5.528 0.0889 295

30 000 226.5 1.196 0.0184 302

40 000 250.4 0.287 4.00 × 10 −3 317

50 000 270.7 0.0798 1.03 × 10 −3 330

60 000 255.8 0.0225 3.06 × 10 −4 321

70 000 219.7 0.00551 8.75 × 10 −5 297

80 000 180.7 0.00103 2.00 × 10 −5 269
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Table C.3E English Properties of the Atmosphere

Altitude (ft) Temperature (°F) Pressure (lb/ft2)
Density
(slug/ft3)

Velocity of Sound 
(ft/sec)

0 59.0 2116 0.00237 1117

1000 55.4 2014 0.00231 1113

2000 51.9 1968 0.00224 1109

5000 41.2 1760 0.00205 1098

10 000 23.4 1455 0.00176 1078

15 000 5.54 1194 0.00150 1058

20 000 −12.3 973 0.00127 1037

25 000 −30.1 785 0.00107 1016

30 000 −48.0 628 0.000890 995

35 000 −65.8 498 0.000737 973

36 000 −67.6 475 0.000709 971

40 000 −67.6 392 0.000586 971

50 000 −67.6 242 0.000362 971

100 000 −51.4 23.2 3.31 × 10−5 971

Table C.4 Properties of Ideal Gases at 300 K (cv = cp − k, k = cp/cv)

Gas
Chemical
formula

Molar
mass

R cp k

ft-lb

slug- Ro

kJ

kg K⋅
ft-lb

slug- Ro

kJ

kg K⋅

Air 28.97 1716 0.287 6012 1.004 1.40

Argon Ar 39.94 1244 0.2081 3139 0.5203 1.667

Carbon
dioxide

CO2 44.01 1129 0.1889 5085 0.8418 1.287

Carbon
monoxide

CO 28.01 1775 0.2968 6238 1.041 1.40

Ethane C2H6 30.07 1653 0.2765 10 700 1.766 1.184

Helium He 4.003 12 420 2.077 31 310 5.193 1.667

Hydrogen H2 2.016 24 660 4.124 85 930 14.21 1.40

Methane CH4 16.04 3100 0.5184 13 330 2.254 1.30

Nitrogen N2 28.02 1774 0.2968 6213 1.042 1.40

Oxygen O2 32.00 1553 0.2598 5486 0.9216 1.394

Propane C3H8 44.10 1127 0.1886 10 200 1.679 1.12

Steam H2O 18.02 2759 0.4615 11150 1.872 1.33
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Table C.5 Properties of Common Liquids at Atmospheric Pressure and Approximately 
16°C to 21°C (60°F to 70°F)

Liquid

Specifi c Weight Density Surface Tension Vapor Pressure

lb/ft3 N/m3 slugs/ft3 kg/m3 lb/ft N/m psia kPa

Alcohol, ethyl 49.3 7744 1.53 789 0.0015 0.022 —

Benzene 56.2 8828 1.75 902 0.0020 0.029   1.50 10.3

Carbon
tetrachloride

99.5 15 629 3.09 1593 0.0018 0.026 12.50 86.2

Glycerin 78.6 12346 2.44 1258 0.0043 0.063 2 × 10−6   1.4 × 10−5

Kerosene 50.5 7933 1.57 809 0.0017 0.025 — —

Mercury* 845.5 132 800 26.29 13550 0.032 0.467   2.31 × 10−5   1.59 × 10−4

SAE 10 oil 57.4 9016 1.78 917 0.0025 0.036 — —

SAE 30 oil 57.4 9016 1.78 917 0.0024 0.035 — —

Water 62.4 9810 1.94 1000 0.0050 0.073   0.34   2.34

*In contact with air.
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Figure C.1 Viscosity as a function of temperature. (From R.W. Fox and T.A. McDonald, Introduction 
to Fluid Mechanics, 2nd ed., John Wiley & Sons, Inc., New York, 1978.)
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Figure C.2 Kinematic viscosity as a function of temperature, at atmospheric pressure. 
(From R.W. Fox and T.A. McDonald, Introduction to Fluid Mechanics, 2nd ed., John 

Wiley & Sons, Inc., New York, 1978.)
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Compressible Flow 
Table for Air

APPENDIX D

Table D.1 Isentropic Flow 

M p/p0 T/T0 A/A*

0 1.0000 1.0000 0

0.04 0.9989 0.9997 14.4815

0.08 0.9955 0.9987 7.2616

0.12 0.9900 0.9971 4.8643

0.16 0.9823 0.9949 3.6727

0.20 0.9725 0.9921 2.9635

0.24 0.9607 0.9886 2.4956

M p/p0 T/T0 A/A*

0.28 0.9470 0.9846 2.1656

0.32 0.9315 0.9799 1.9219

0.36 0.9143 0.9747 1.7358

0.40 0.8956 0.9690 1.5901

0.44 0.8755 0.9627 1.4740

0.48 0.8541 0.9560 1.3801

0.52 0.8317 0.9487 1.3034
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M p/p0 T/T0 A/A*

0.56 0.8082 0.9410 1.2403

0.60 0.7840 0.9328 1.1882

0.64 0.7591 0.9243 1.1452

0.68 0.7338 0.9153 1.1097

0.72 0.7080 0.9061 1.0806

0.76 0.6821 0.8964 1.0570

0.80 0.6560 0.8865 1.0382

0.84 0.6300 0.8763 1.0237

0.88 0.6041 0.8659 1.0129

0.92 0.5785 0.8552 1.0056

0.96 0.5532 0.8444 1.0014

1.00 0.5283 0.8333 1.000

1.04 0.5039 0.8222 1.001

1.08 0.4800 0.8108 1.005

1.12 0.4568 0.7994 1.011

1.16 0.4343 0.7879 1.020

1.20 0.4124 0.7764 1.030

1.24 0.3912 0.7648 1.043

1.28 0.3708 0.7532 1.058

1.32 0.3512 0.7416 1.075

1.36 0.3323 0.7300 1.094

1.40 0.3142 0.7184 1.115

1.44 0.2969 0.7069 1.138

1.48 0.2804 0.6954 1.163

1.52 0.2646 0.6840 1.190

1.56 0.2496 0.6726 1.219

1.60 0.2353 0.6614 1.250

1.64 0.2217 0.6502 1.284

1.68 0.2088 0.6392 1.319

1.72 0.1966 0.6283 1.357

1.76 0.1850 0.6175 1.397

M p/p0 T/T0 A/A*

1.80 0.1740 0.6068 1.439

1.84 0.1637 0.5963 1.484

1.88 0.1539 0.5859 1.531

1.90 0.1492 0.5807 1.555

1.92 0.1447 0.5756 1.580

1.96   0.1360 0.5655 1.633

2.00 0.1278 0.5556 1.688

2.04 0.1201 0.5458 1.745

2.08 0.1128 0.5361 1.806

2.12 0.1060 0.5266 1.869

2.16 0.09956 0.5173 1.935

2.20 0.09352 0.5081 2.005

2.24 0.08785 0.4991 2.078

2.28 0.08251 0.4903 2.154

2.32 0.07751 0.4816 2.233

2.36 0.07281 0.4731 2.316

2.40 0.06840 0.4647 2.403

2.44 0.06426 0.4565 2.494

2.48 0.06038 0.4484 2.588

2.52 0.05674 0.4405 2.686

2.56 0.05332 0.4328 2.789

2.60 0.05012 0.4252 2.896

2.64 0.04711 0.4177 3.007

2.68 0.04429 0.4104 3.123

2.72 0.04165 0.4033 3.244

2.76 0.03917 0.3963 3.370

2.80 0.03685 0.3894 3.500

2.84 0.03467 0.3827 3.636

2.88 0.03263 0.3761 3.777

2.92 0.03071 0.3696 3.924

2.96 0.02891 0.3633 4.076

Table D.1 Isentropic Flow (Continued)
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M p/p0 T/T0 A/A*

3.00 0.02722 0.3571 4.235

3.04 0.02564 0.3511 4.399

3.08 0.02416 0.3452 4.570

3.12 0.02276 0.3393 4.747

3.16 0.02146 0.3337 4.930

3.20 0.02023 0.3281 5.121

3.24 0.01908 0.3226 5.319

3.28 0.01799 0.3173 5.523

3.32 0.01698 0.3121 5.736

3.36 0.01602 0.3069 5.956

3.40 0.01512 0.3019 6.184

3.44 0.01428 0.2970 6.420

3.48 0.01349 0.2922 6.664

3.52 0.01274 0.2875 6.917

3.56 0.01204 0.2829 7.179

3.60 0.01138 0.2784 7.450

3.64 0.01076 0.2740 7.730

3.68 0.01018 0.2697 8.020

3.72 0.009633 0.2654 8.320

3.76 0.009116 0.2613 8.630

3.80 0.008629 0.2572 8.951

3.84 0.008171 0.2532 9.282

3.88 0.007739 0.2493 9.624

3.92 0.007332 0.2455 9.977

3.96 0.006948 0.2418 10.34

4.00 0.006586 0.2381 10.72

4.04 0.006245 0.2345 11.11

4.08 0.005923 0.2310 11.51

M p/p0 T/T0 A/A*

4.12 0.005619 0.2275 11.92

4.16 0.005333 0.2242 12.35

4.20 0.005062 0.2208 12.79

4.24 0.004806 0.2176 13.25

4.28 0.004565 0.2144 13.72

4.32 0.004337 0.2113 14.20

4.36 0.004121 0.2083 14.70

4.40 0.003918 0.2053 15.21

4.44 0.003725 0.2023 15.74

4.48 0.003543 0.1994 16.28

4.52 0.003370 0.1966 16.84

4.54 0.003288 0.1952 17.13

4.58 0.003129 0.1925 17.72

4.62 0.002978 0.1898 18.32

4.66 0.002836 0.1872 18.94

4.70 0.002701 0.1846 19.58

4.74 0.002573 0.1820 20.24

4.78 0.002452 0.1795 20.92

4.82 0.002338 0.1771 21.61

4.86 0.002229 0.1747 22.33

4.90 0.002126 0.1724 23.07

4.94 0.002028 0.1700 23.82

4.98 0.001935 0.1678 24.60

6.00 0.000633 0.1219 53.19

8.00 0.000102 0.0725 109.11

10.00 0.0000236 0.0476 535.94

∞ 0 0 ∞

Table D.1 Isentropic Flow (Continued)
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M1 M2 p2/p1 T2/T1 p02/p01

1.00 1.0000 1.0000 1.000 1.0000

1.04 0.9620 1.095 1.026 0.9999

1.08 0.9277 1.194 1.052 0.9994

1.12 0.8966 1.297 1.078 0.9982

1.16 0.8682 1.403 1.103 0.9961

1.20 0.8422 1.513 1.128 0.9928

1.24 0.8183 1.627 1.153 0.9884

1.28 0.7963 1.745 1.178 0.9827

1.30 0.7860 1.805 1.191 0.9794

1.32 0.7760 1.866 1.204 0.9758

1.36 0.7572 1.991 1.229 0.9676

1.40 0.7397 2.120 1.255 0.9582

1.44 0.7235 2.253 1.281 0.9476

1.48 0.7083 2.389 1.307 0.9360

1.52 0.6941 2.529 1.334 0.9233

1.56 0.6809 2.673 1.361 0.9097

1.60 0.6684 2.820 1.388 0.8952

1.64 0.6568 2.971 1.416 0.8799

1.68 0.6458 3.126 1.444 0.8640

1.72 0.6355 3.285 1.473 0.8474

1.76 0.6257 3.447 1.502 0.8302

1.80 0.6165 3.613 1.532 0.8127

1.84 0.6078 3.783 1.562 0.7948

1.88 0.5996 3.957 1.592 0.7765

1.92 0.5918 4.134 1.624 0.7581

1.96 0.5844 4.315 1.655 0.7395

2.00 0.5774 4.500 1.688 0.7209

2.04 0.5707 4.689 1.720 0.7022

2.08 0.5643 4.881 1.754 0.6835

2.12 0.5583 5.077 1.787 0.6649

2.16 0.5525 5.277 1.822 0.6464

2.20 0.5471 5.480 1.857 0.6281

Table D.2 Normal Shock Flow
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M1 M2 p2/p1 T2/T1 p02/p01

2.24 0.5418 5.687 1.892 0.6100

2.28 0.5368 5.898 1.929 0.5921

2.30 0.5344 6.005 1.947 0.5833

2.32 0.5321 6.113 1.965 0.5745

2.36 0.5275 6.331 2.002 0.5572

2.40 0.5231 6.553 2.040 0.5401

2.44 0.5189 6.779 2.079 0.5234

2.48 0.5149 7.009 2.118 0.5071

2.52 0.5111 7.242 2.157 0.4991

2.56 0.5074 7.479 2.198 0.4754

2.60 0.5039 7.720 2.238 0.4601

2.64 0.5005 7.965 2.280 0.4452

2.68 0.4972 8.213 2.322 0.4307

2.72 0.4941 8.465 2.364 0.4166

2.76 0.4911 8.721 2.407 0.4028

2.80 0.4882 8.980 2.451 0.3895

2.84 0.4854 9.243 2.496 0.3765

2.88 0.4827 9.510 2.540 0.3639

2.92 0.4801 9.781 2.586 0.3517

2.96 0.4776 10.06 2.632 0.3398

3.00 0.4752 10.33 2.679 0.3283

3.04 0.4729 10.62 2.726 0.3172

3.08 0.4706 10.90 2.774 0.3065

3.12 0.4685 11.19 2.823 0.2960

3.16 0.4664 11.48 2.872 0.2860

3.20 0.4643 11.78 2.922 0.2762

Table D.2 Normal Shock Flow (Continued)
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M1 M2 p2/p1 T2/T1 p02/p01

3.24 0.4624 12.08 2.972 0.2668

3.28 0.4605 12.38 3.023 0.2577

3.30 0.4596 12.54 3.049 0.2533

3.32 0.4587 12.69 3.075 0.2489

3.36 0.4569 13.00 3.127 0.2404

3.40 0.4552 13.32 3.180 0.2322

3.44 0.4535 13.64 3.234 0.2243

3.48 0.4519 13.96 3.288 0.2167

3.52 0.4504 14.29 3.343 0.2093

3.56 0.4489 14.62 3.398 0.2022

3.60 0.4474 14.95 3.454 0.1953

3.64 0.4460 15.29 3.510 0.1887

3.68 0.4446 15.63 3.568 0.1823

3.72 0.4433 15.98 3.625 0.1761

3.76 0.4420 16.33 3.684 0.1702

3.80 0.4407 16.68 3.743 0.1645

3.84 0.4395 17.04 3.802 0.1589

3.88 0.4383 17.40 3.863 0.1536

3.92 0.4372 17.76 3.923 0.1485

3.96 0.4360 18.13 3.985 0.1435

4.00 0.4350 18.50 4.047 0.1388

4.04 0.4339 18.88 4.110 0.1342

4.08 0.4329 19.25 4.173 0.1297

4.12 0.4319 19.64 4.237 0.1254

4.16 0.4309 20.02 4.301 0.1213

4.20 0.4299 20.41 4.367 0.1173

Table D.2 Normal Shock Flow (Continued)
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M1 M2 p2/p1 T2/T1 p02/p01

4.24 0.4290 20.81 4.432 0.1135

4.28 0.4281 21.20 4.499 0.1098

4.32 0.4272 21.61 4.566 0.1062

4.36 0.4264 22.01 4.633 0.1028

4.40 0.4255 22.42 4.702 0.9948–l

4.44 0.4247 22.83 4.771 0.9628–l

4.48 0.4239 23.25 4.840 0.9320–l

4.52 0.4232 23.67 4.910 0.9022–l

4.56 0.4224 24.09 4.981 0.8735–l

4.60 0.4217 24.52 5.052 0.8459–l

4.64 0.4210 24.95 5.124 0.8192–l

4.68 0.4203 25.39 5.197 0.7934–l

4.72 0.4196 25.82 5.270 0.7685–l

4.76 0.4189 26.27 5.344 0.7445–l

4.80 0.4183 26.71 5.418 0.7214–l

4.84 0.4176 27.16 5.494 0.6991–l

4.88 0.4170 27.62 5.569 0.6775–l

4.92 0.4164 28.07 5.646 0.6567–l

4.96 0.4158 28.54 5.723 0.6366–l

5.00 0.4152 29.00 5.800 0.6172–l

6.00 0.4042 41.83 7.941 0.2965–l

7.00 0.3974 57.00 10.469 0.1535–l

8.00 0.3929 74.50 13.387 0.0849–l

9.00 0.3898 94.33 16.693 0.0496–l

10.00 0.3875 116.50 20.388 0.0304–l

∞ 0.3780 ∞ ∞ 0

Table D.2 Normal Shock Flow (Continued)
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Table D.3 Prandtl-Meyer Function

M q m

1.00 0 90.00

1.04 0.3510 74.06

1.08 0.9680 67.81

1.12 1.735 63.23

1.16 2.607 59.55

1.20 3.558 56.44

1.24 4.569 53.75

1.28 5.627 51.38

1.32 6.721 49.25

1.36 7.844 47.33

1.40 8.987 45.58

1.44 10.146 43.98

1.48 11.317 42.51

1.52 12.495 41.14

1.56 13.677 39.87

1.60 14.861 38.68

1.64 16.043 37.57

1.68 17.222 36.53

1.72 18.397 35.55

1.76 19.565 34.62

1.80 20.725 33.75

1.84 21.877 32.92

1.88 23.019 32.13

1.92 24.151 31.39

1.96 25.271 30.68

2.00 26.380 30.00

2.04 27.476 29.35

2.08 28.560 28.74

2.12 29.631 28.14

2.16 30.689 27.58

2.20 31.732 27.04

M q m

2.24 32.763 26.51

2.28 33.780 26.01

2.32 34.783 25.53

2.36 35.771 25.07

2.40 36.746 24.62

2.44 37.708 24.19

2.48 38.655 23.78

2.52 39.589 23.38

2.56 40.509 22.99

2.60 41.415 22.62

2.64 42.307 22.26

2.68 43.187 21.91

2.72 44.053 21.57

2.76 44.906 21.24

2.80 45.746 20.92

2.84 46.573 20.62

2.88 47.388 20.32

2.92 48.190 20.03

2.96 48.980 19.75

3.00 49.757 19.47

3.04 50.523 19.20

3.08 51.277 18.95

3.12 52.020 18.69

3.16 52.751 18.45

3.20 53.470 18.21

3.24 54.179 17.98

3.28 54.877 17.75

3.32 55.564 17.53

3.36 56.241 17.31

3.40 56.907 17.10

3.44 57.564 16.90
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M q m

3.48 58.210 16.70

3.52 58.847 16.51

3.56 59.474 16.31

3.60 60.091 16.13

3.64 60.700 15.95

3.68 61.299 15.77

3.72 61.899 15.59

3.76 62.471 15.42

3.80 63.044 15.26

3.84 63.608 15.10

3.88 64.164 14.94

3.92 64.713 14.78

3.96 65.253 14.63

4.00 65.785 14.48

4.04 66.309 14.33

4.08 66.826 14.19

4.12 67.336 14.05

4.16 67.838 13.91

4.20 68.333 13.77

4.24 68.821 13.64

M q m

4.28 69.302 13.51

4.32 69.777 13.38

4.36 70.245 13.26

4.40 70.706 13.14

4.44 71.161 13.02

4.48 71.610 12.90

4.52 72.052 12.78

4.56 72.489 12.67

4.60 72.919 12.56

4.64 73.344 12.45

4.68 73.763 12.34

4.72 74.176 12.23

4.76 74.584 12.13

4.80 74.986 12.03

4.84 75.383 11.92

4.88 75.775 11.83

4.92 76.162 11.73

4.96 76.544 11.63

5.00 76.920 11.54

Table D.3 Prandtl-Meyer Function (Continued)
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Final Exams

               Final Exam No. 1
 1. If force, length, and time are selected as the basic dimensions (the F-L-T

system), the dimensions on mass are

(A) FL/T 2

(B) FL2/T

(C) FT 2/L

(D) FT/L2

 2. A steel needle of length L, radius r, and density r
s
 can fl oat in water. This is 

possible, assuming a vertical surface-tension force, if the surface tension is 
greater than

(A) π ρr L s
2 2/

(B) π ρr L s
2

(C) 2 2π ρr L s

(D) π ρr L s
2 4/
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 3. If the pressure in the water pipe is 40 kPa and h = 20 cm, the distance H is 
nearest (S

Hg
= 13.6)

1

2

4

3
h

H

g
Water

Pipe

g
Mercury

(A) 31 cm 

(B) 37 cm

(C) 42 cm 

(D) 49 cm

 4. The gate shown is a quarter circle of radius 120 cm. The hinge is 60 cm 
below the water surface. The force needed to just open the 1.4-m-wide gate 
is nearest

Hinge

Gate

Water

P

(A) 10.1 kN

(B) 12.9 kN

(C) 14.6 kN

(D) 18.2 kN

 5. The velocity fi eld is given by V i j= +2xy xt  m/s. The acceleration at the 
location (2, −1) at t = 2 is

(A) 20i + j

(B) 24i + 4j

(C) 8i + 6j

(D) 16i + 2j
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 6. The temperature of  a fl uid fl ow is given by (60 – 0.2xy)°C. The velocity 
fi eld is V = 2xyi + ytj m/s. The rate of change of the temperature at (2, −4) m 
at t = 4 s is

(A) −12.8°C/s

(B) −10.6°C/s

(C) − 6.4°C/s

(D) − 4.8°C/s

 7. Select the only true statement for Bernoulli’s equation:

(A) It can be applied between two points in a rotating fl ow.

(B) It can be applied to an unsteady fl ow.

(C) It can be applied to a viscous fl ow if the effects of viscosity are 
included.

(D) It can be applied between two points along a streamline in an 
inviscid fl ow.

 8. Water fl ows at 0.01 m3/s in a pipe that splits into a 2-cm-diameter pipe and 
a square conduit. If the average velocity in the smaller pipe is 20 m/s, the 
mass fl ux in the conduit is nearest

(A) 3.72 kg/s

(B) 4.63 kg/s

(C) 6.41 kg/s

(D) 8.18 kg/s

 9. Atmospheric air fl ows over the fl at plate as shown. Viscosity makes the air 
stick to the surface creating a thin boundary layer. Estimate the average 
velocity v  of the air across the top surface that is 10 cm above the plate if 
u y y( ) .= 800

40 m/s

200 cm

40 m/sm
.

y

u(y)

(A) 0.75 m/s

(B) 0.5 m/s

(C) 0.25 m/s

(D) 0.10 m/s
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 10. Water fl ows from a reservoir with an elevation of 25 m out a short pipe that 
contains a turbine to produce power. The exit is at an elevation of 5 m. If 
the fl ow rate is 0.01 m3/s, the maximum power output is nearest

(A) 1960 W

(B) 2430 W

(C) 2650 W

(D) 3480 W

 11. An 88 percent effi cient pump is used to increase the pressure in water in a 
6-cm-diameter pipe from 120 kPa to 2000 MPa at an average velocity of 
4 m/s. The required horsepower is nearest

(A) 42.6 hp

(B) 36.2 hp

(C) 32.4 hp

(D) 28.5 hp

 12. A nozzle with a 2-cm-diameter outlet is attached to a 10-cm-diameter hose. 
If the exit velocity is 50 m/s, the force of the water on the nozzle is nearest

(A) 9050 N

(B) 7500 N

(C) 2420 N

(D) 750 N

 13. A stationary blade turns a 2-cm-diameter jet through an angle of 60°. The 
velocity of the water is 40 m/s. The x-component of the force acting on the 
blade is nearest

(A) 159 N

(B) 251 N

(C) 426 N

(D) 754 N

 14. Select the dimensionless group into which the variables velocity V,
viscosity m, density r, and radius R can be combined. 

(A) ρ μV R/

(B) μ ρV R/

(C) μ ρVR/

(D) ρ μVR/
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15. A proposed new design of the front portion of a ship is being studied in a 
water channel with a 25 to 1 scale model. A force of 4 N is measured on the 
model. What force would be expected on the prototype?

(A) 12.5 kN

(B) 24.8 kN

(C) 48.2 kN

(D) 62.5 kN

16. Estimate the torque needed to rotate a 10-cm-diameter, 25-cm-long cylinder 
inside a 10.2-cm-diameter cylinder at 800 rpm if SAE-10W oil at 20°C fi lls 
the gap. Neglect the contribution by the ends.

(A) 1.64 N · m

(B) 2.48 N · m

(C) 4.22 N · m

(D) 6.86 N · m

 17. Water at 20°C is pumped through a 4-cm-diameter, 40-m-long cast-iron pipe 
from one reservoir to another with a water level 20 m higher. The power 
required of an 85 percent effi cient pump for a fl ow rate of 0.02 m3/s is nearest

(A) 67.9 kW

(B) 74.8 kW

(C) 87.2 kW

(D) 92.5 kW

18. Estimate the depth of fl ow in a 2-m-wide, rectangular, fi nished concrete 
channel with a slope of 0.002 if 2 m3/s of water is fl owing.

(A) 0.45 m

(B) 0.55 m

(C) 0.65 m

(D) 0.75 m

 19. Estimate the percentage savings in the power needed to move a semitruck 
on a level surface at 70 mph through standard air with a defl ector and gap 
seal compared to one without the defl ector and seal.

(A) 19%

(B) 23%

(C) 27%

(D) 32%
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 20. A uniform fl ow V i= 2  m/s is superimposed on a doublet with strength of 
2 m3/s. The radius of the resulting cylinder is

(A) 1 m

(B) 2 m

(C) 3 m

(D) 4 m

 21. The maximum thickness of a laminar boundary layer that forms on a 
2-m-long fl at plate due to a parallel fl ow of water at 30°C moving at 
8 m/s is 

(A) 0.98 mm

(B) 1.12 mm

(C) 1.86 mm

(D) 2.44 mm

 22. If the boundary layer of Prob. 21 was turbulent from the leading edge, it’s 
thickness at the end of the plate would be nearest

(A) 9.8 mm

(B) 11 mm

(C) 18 mm

(D) 26 mm

 23. A bullet is traveling at 600 m/s in standard air. Its Mach number is nearest

(A) 1.76

(B) 1.93

(C) 2.01

(D) 2.64 

 24. A converging nozzle is attached to a reservoir maintained at 20°C and 
200 kPa. What receiver pressure would just result in M

e
= 1?

(A) 76 kPa

(B) 93 kPa

(C) 106 kPa

(D) 264 kPa
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 25. Air at 25°C and 200 kPa abs enters a normal shock wave at 400 m/s. The 
exiting velocity is nearest

(A) 343 m/s

(B) 316 m/s

(C) 303 m/s

(D) 284 m/s

 26. Air at M = 2.4 turns a convex corner of 40°. Estimate the increased Mach 
number after the corner.

(A) 3.44

(B) 3.88

(C) 4.24

(D) 4.98 

         Final Exam No. 2
 1. An equation that provides a rate of fl ow (m3/s) in an open channel is 

Q kAR S= 2 3 1 2/ / , where A is an area, R is a “radius.” What are the units of k?

 2. A viscometer consists of two 15-cm-long cylinders with radii of 5 and 
4.8 cm respectively. The outer one is stationary and the inner one rotates 
at 150 rpm. Estimate the viscosity of the fl uid if a torque of 0.05 N · m is 
required.

 3. A vertical gate measures 120-cm high and 240-cm wide. What horizontal 
force at the top is needed to hold water at a depth of 1 m? A frictionless 
hinge exists at the bottom.

 4. The U-tube is rotated about the left leg at 150 rpm. Calculate the pressure 
at A in the water if L is 40 cm.

x
L

L

A

z

B

Open

L

 5. A velocity fi eld is given by V i j= +2xy xt . Find a unit vector normal to the 
streamline at the location (2, −1) at t = 2.
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 6. The density of air over a mountain varies with x and z, as do the two 
velocity components u and w for this steady fl ow. Write the expression 
for Dr/Dt, the rate of change of the density.

 7. The wind in a hurricane has a velocity of 180 km/h. Estimate the maximum 
force on a 1- by 2-m window.

 8. Air at 20°C and 140 kPa fl ows in a 75- by 25-cm conduit with a fl ow rate of 
40 m3/min. It exits from a blower at 250 kPa and 25°C in a 40-cm-diameter 
pipe. Calculate the average velocity in the pipe.

 9. Air at 200°C and 620 kPa enters a turbine with a negligible velocity. It exits 
through a 4-cm-diameter pipe at 20°C and 100 kPa with a velocity of 30 m/s. 
Estimate the maximum power output of the turbine.

 10. Water fl ows off a mountain into a rectangular channel at a depth of 80 cm 
at 20 m/s. Calculate the depth to which it is able to “jump.”

 11. For the 2-cm-diameter water jet shown, V
1

= 60 m/s, b = 30°, V
B

= 20 m/s, 
and a

2
= 45°. What blade angle a

1
 should be selected for proper design?

Fixed jet

V1

V 2

b 2

b 1

a 2

a 1

Time-average
position of
exiting jet

VB

12. A disc of diameter D rotates at a distance d from a fl at plate. A liquid of 
density r and viscosity m fi lls the space. Develop an expression for the 
torque T needed to rotate the disc at rotational speed Ω. Select r, Ω, D as 
repeating variables.
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 13. A study is to be performed on the fl ow of water around a very small organism. 
A larger scale model is used, 200 times larger than the organism. If water at 
the same temperature is used in the model study, what speed should be used 
to simulate a speed of 0.006 m/s by the organism?

 14. Water at 15°C fl ows from a reservoir through a 6-cm-diameter, wrought-
iron, 40-m-long pipe to the atmosphere. The pipe has a reentrant entrance 
and its outlet is 10 m below the water surface. Estimate the mass fl ux.

 15. A uniform fl ow V = 6i  and a doublet m = 20 m3/s are superimposed to 
create the fl ow of water around a cylinder. Calculate the minimum pressure 
on the cylinder if the pressure at the stagnation point is 100 kPa.

 16. Water at 20°C fl ows parallel to a 1-m-wide by 2-m-long fl at plate at 5 m/s. 
Estimate the drag force on one side of the plate assuming turbulent fl ow 
from the leading edge.

 17. A pitot tube on a vehicle measures 5 cm of mercury in 40°C air. Estimate 
the speed of the vehicle.

 18. A weak oblique shock with M
1
= 2 impacts a plane surface at 40°. Find the 

angle of the refl ected shock.
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Quizzes and 
Final Exams

Chapter 1
QUIZ NO. 1

 1. A 
N s

m

kg m

s

s

m

kg

s m

⋅
=

⋅
=

⋅2 2 2

 2. C λ =
× ×

× × ×

−

−

0 225 4 8 10

100 0 287 288 3 7 10

26. .

[ ( . )] ( ./ 110 2
86 5 10

)
.= × − m or 65 nm
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 3. D h
p

g
= =

−
× ×

=
ρHg

m or 2
61 64 25

13 6 1000 9 81
0 275

.

( . ) .
. 775 mm

 4. B p z p e egz RT( ) / . /( )= = =− − × ×
0

9 81 6000 287 2880 100 49..1 kPa

                  

49 1 47 21

47 21
100 4 0

. .

.
. %

−
× =

 5. B S = =
1500 2

1000
0 75

/
.

 

6. D

 

T AR= =
× ×

−
⎛
⎝⎜

⎞
⎠⎟

τ μ π
0 046

0 038 120 2 60

0 04 0 038
.

.

. .

/
(( . . ) .

.

2 0 038 0 12 0 038

0 177 2

π

μ

× × ×

∴ = ⋅N s/m

 7. A B V
p

V

p
p

T

= − = − ×
Δ

−
∴Δ =

Δ
Δ

2100 0 1
0 1 0 0982

37 8.
. .

. MPa

 8. C Refer to Table C.1: p
r

= =
×

×
=−

4 4 0 0736

10 10
29400

6

σ .
Pa or 29.4 kPa

 9. D Since pV mRT= , and V  and m are constant, there results 

                p T p T1 1 2 2/ /= .  Hence, 370 333 243 2702 2/ / kPa abs= ∴ =p p

                            Thus, gage pressure = 170 kPa (25 psi)

 10. A V m V m
V

V1 1 2 2
1

2

1

2

= = ∴ =v v
v
v

 since m is constant.

              

T

p

2

1 4 1

2

295
200

10
978

100
20

=
⎛
⎝⎜

⎞
⎠⎟

= °

=

−.

K or 705 C

00

10
6630

1 4
⎛
⎝⎜

⎞
⎠⎟

=
.

kPa or 6530 kPa gage

                 (Assume p
atmosphere

 = 100 kPa.)

 11. B Assume T ≅ 15°C  c kRT= = × × =1 4 287 288 340. m/s

                     ∴1.5 340 510 m× =
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QUIZ NO. 2

 1.  F ma=   F M
L

T
M

FT

L
= ∴ =

2

2

 2.  Refer to Table C.3:

   
p h

p

g
= + = =

×
=28 79 48 107 5

107500

13 6 100
. .

( .
kPa Hg ρ 00 9 81

0 806
) .

.
×

= m

 3.  τ μ μ= = × =
×

× =− −du

dr

r10

16
10 10

10 0 004

16
10 2 56 3 6.

. PPa

 4.  T rdA
r

r rdr
R

= = =
× × ×

∫ ∫τ μ
δ

π π
0 0

0 2

2
0 09 2 600 2 60

0

Ω. . /

..

.
.

0016

0 2

4
2 83

4

× = ⋅N m 

 5.  h
D

= =
× ×
× ×

=
4 4 0 0718 1 0

996 9 81 0 0002
0

σ β
γ
cos . .

( . ) .
.1147 m

 6.  F D D r D r= + × = +2 22 2σπ γ π π π σ γ πwire wire( )

 7.  T AR
u

RL R= =
Δ

× = ×
× ×τ μ

δ
π π

2 0 07
0 02 1200 2 60

0 0001
.

.

.

/
×× × ×2 0 02 22π .

        = ⋅ = =
×

=8 8
746

8 8 125 7

746
1 5.

. .
.N m Power hp

TΩ

 8.  Δ ΔV V TT= = × × × − = −−α 3 8 10 2 10 0 00764. ( ) . m3

               Δ
Δ

p
V

V
= − =

× −
=

2100 2100 0 0076

2
7 98

( . )
. MPa

 9.  pA W= × =100 000 1 100 000 N or 100 kN

 

10.

  

T T
p

p

k k

2 1
2

1

1

18 273
100

250 100
=

⎛

⎝⎜
⎞
⎠⎟

= +
+

⎛
⎝

−( )/

( )⎜⎜
⎞
⎠⎟

= − °

0 4 1 4

203 70

. / .

K or C
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Chapter 2
QUIZ NO. 1

 

1. D

 

p h h

h

= × = ×

∴ =

γ 9810 2 13 6 9810

0 147

.

.
Hg

Hg m or 147 mm

 2. B p H h1 9810 0 1 981= − = × =γ γwater air Pa.

 3. C p h H pw w Hg w+ = = × × − × =γ γ 13 6 9810 0 25 9810 0 15 3190. . . 00 Pa

 4. C F hA= = × × × =γ π9810 30 0 30 832002. N

 5. A 3 9810
3

2
3 3

1

3
3 44 100P P= × × × × × ∴ =( ) N

 6. C F
H

H P H b F
H

P
b

= × = × × = ×γ γ
2 3 2

w w

        Moments: γ γH
H

H
H b

b
H

2 3 2
3 1 6 2 77× × = × × ∴ = × =w w . . m

 7. D 200 125 75 200 2 67= + ∴ = = ∴ =F F S SB B N 75 .

 8. A tan
. .

. ( . )α = = ∴ = = × + =
6

9 81 4 2
2 57 9810 1 4 3890

H
H p Hm 00 Pa

 9. A F p A= = + × × =avg N
9810

2
2 57 3 97 4 2 0 8 107 800( . . ) ( . . )

 10. B p p r r2 1

2

2 1

2

2

1000 1000 2 60

2
0 12− = − =

× ×
× =

ρ πΩ
( )

( )
.

/
665 800 Pa

 11. C p p r r pA2 1

2

2
2

1
2

2
2

2

1000 10 47

2
0 4 877− = − =

×
× =

ρΩ
( )

.
. 00 Pa

       where Ω =
×

= = = × =
100 2

60
10 47 9810 0 4 3920

π γ. .rad/s Pp LB aa   
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QUIZ NO. 2
 1.  Δ = Δ = × × Δ ∴Δ =p h h hγ 200 000 0 75 9810 27 2. . m   

 2.  p gh
p

RT
ghin in

atm

in

= = =
×

× × =ρ 100

0 287 295
9 81 3 34

.
. ..76 Pa

      p gh
p

RT
ghout

out

= = =
×

× ×ρout
atm 100

0 287 253
9 81 3

.
. == ∴Δ =40 53 5 8. .Pa Pap

 3.  p h V V V= = × = ∴ =γ ρwater air / /2 22 9810 0 25 0 8194 2 77. . ..4 m/s

 4.  F hA= = × × × =γ π9810 30 0 30 832002. N  (The angle makes no difference.)

 

5.

  

P 0 8
1 2

65
9810

1 2

2
2

1 2

65
.

.

sin

. .

sin
+

°
⎛
⎝⎜

⎞
⎠⎟

= × × ×
°

⎛
⎝⎝⎜

⎞
⎠⎟

× ×
°

∴ =

1

3

1 2

65

3240

.

sin

P N

 6.  Move F
H
 and F

V  
to 

 
the center of the circular arc (F

V
 produces no moment):         

     

F F h A P F

P
H H= = = × × × = =
∴ =

1 9810 1 2 3 58 860 2 6 2

45

γ ( ) .N

3300 N

 

7.

  

F

W F
B

B

= × × =
∴ = − = −

−1200 10 9810 11 77

20 20

6 . N

in H O2
111 77 8 23. .= N

 8.  The zero-pressure line slopes down from the rear toward the front:

   

tan
.

. tan
.

.α α= = ∴ = = =

∴ =

6

9 81 2
1 223

6

9 81

0 223H
H

x
x

m

00 365. m

 9.  The force is the average pressure times the area: 

   
F p A= = − × × =avg N

γ
2

1 0 223 2 0 8 6100( . ) ( . )

 10.  Use Ω =
×

=
100 2

60
10 47

π
. rad/s. Equate the air volume before and after:

   

π π π× × = = × ∴ =0 6 0 24
1

2

1

2

10 47

2
0 4192 2 2

2 2

. .
.

.r h r
r

g
r m

mH
r

g1

2
2
2 2 2

2

10 47 0 419

2 9 81
0 983= =

×
×

=
Ω . .

.
.
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H
r

g2

2
2
2 2 2

2

10 47 0 6

2 9 81
2 011

0 9 0 2

= =
×

×
=

+

Ω . .

.
.

. .

m

44 2 168 9810 2 168 21 2701 2− + = ∴ = × =H H pA. .m Pa

Chapter 3
QUIZ NO. 1

 

1. C

 

a
V V V V

j i i

= + + +

= + + =

u
x y z t

yt x t y

∂
∂

∂
∂

∂
∂

∂
∂

v w

2 2 2( ) ( ) 112 24 4 28 12

28 12 30 5

2

2 2 2

j i i i j+ + = +

= + =

m/s

m/sa .

 

2. D

 

ωω = = −
⎛

⎝⎜
⎞

⎠⎟
+ −

⎛

⎝⎜
⎞

⎠⎟
+2ΩΩ

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

w v w v
x y

u

z x x
i j −−

⎛

⎝⎜
⎞

⎠⎟

= − − ∴ = −

∂
∂

u

y

t x

k

i k i2 3ωω rad/s

 3. A a u
u

x

u

y

u

z

u

t
( . )0 5 0= + + + =

∂
∂

∂
∂

∂
∂

∂
∂

v w   (a = 0 everywhere.)

 4. B V r⋅ =d 0  so V i j i j= + + =( ) ( )2 02xy y t dx dy××

          
xydy y dx

dx

x

dy

y
x y− = ∴ = = +2 0 . ln ln lIntegrate: nnC x Cy∴ =

          If the streamline passes through (2, −1), then C = −2 and x = −2y

 5. B Re m/s= ≅ = ∴ =−

VD V
V

ν
0 002

10
2000 1

6

.

 6. D b, g

 7. C 
D

Dt
u

x y z t
u

x

ρ ρ ρ ρ ρ ρ
= + + + =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

v w

 8. A Bernoulli’s: 
p V V

V
ρ

=
×

= ∴ =
2 2

2

0 1 9810

1 20 2
40 4

.

.
. m/s
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 9. C Point 2 is inside the pitot probe: 
V p V p

V p p
2

2
2

2
22 2

2
+ = + = −

ρ ρ ρ
so ( )

                  Manometer: p h p h p p h+ = + ∴ − = −γ γ γ γHg Hg2 2 ( )

         So, V
h

= − =
×

× − =
2 2 0 1

1000
13 6 9810 9810 4 97

ρ
γ γ( )

.
( . ) .Hg m/s

 10. B 

 11. B − = − = × ∴ =
Δ
Δ

Δ
Δ

p

n

V

R

p
pρ

2 2

0 02
1000

20

0 12
66 700

. .
Pa

QUIZ NO. 2

 1.  
D

Dt
u

x y z t

ρ ρ ρ ρ ρ
= + + + =

∂
∂

∂
∂

∂
∂

∂
∂

v w 0

 

2.

  

a
r r z r tr r

r r
z

r r= + + − +

=

v
v v v

v
v v v∂

∂
∂
∂

∂
∂

∂
∂

θ θ

θ

2

22
8 16 2 8

2 3 3
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+ +
⎛
⎝⎜

⎞
⎠⎟r r r r

cos cosθ θ ssin sin

sin

θ θ

θ

2
8

1
2

8

2

2

2

2

−
⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

r

r r
2

= + +
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

=0
2
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8
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3
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= + + +
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a
r r zr z

r
θ

θ θ θ θ

θ
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v v v
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∂

∂
∂

∂
∂

θθ θ

θ θ

r t

r r
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⎞
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⎛
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⎞
⎠⎟

+

∂
∂
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2
8 16

2 3
cos sin
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2

8 2 8

2
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2

2

2r r r r
+

⎛
⎝⎜

⎞
⎠⎟

− −
⎛
⎝⎜

⎞
⎠⎟

+

sin cos
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θ θ

θ
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2

0

0

⎛
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⎠⎟

=
=

sinθ
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 3.    Lagrangian: Have observers ride around in cars and record their 
observations.

        Eulerian: Position observers on various corners and have them record their 
observations.

 4.   At the point at t = 2 s, V i j= +4 2 .  The unit vector and the velocity vector 
form the product V · n = 0:

   

( ) ( )

(

4 2 4 2 0 1

2

2 2

2

i j i j+ + = + = + =

+

⋅⋅ n n n n n n

n n

x y x y x y

x xx x yn n2 2 1 1 5 2 5 2 5) , ( )= = = ∴ = +and / / /n i j

 5.  V
Vh

≅ = ∴ = ≅
×

= ×−

6

40
0 15

0 15 1 2

10
1 8 10

6
5.

. .
.m/s Re

ν
, a very 

   turbulent fl ow.
 6.   The answer is (c). The others would (or could) be compressible (d, f), 

viscous (a, e), or inviscid (b, g).

 7.  Re
.

.= × =
×

∴ =−

VL L
L

ν
3 10

2

1 6 10
2 45

5
m

 8.  
V p

gh
V p

gh2
2

2
2

1
2

1
12 2

+ + = + +
ρ ρ

  Units: 
N/m

kg/m

(kg m/s /m

kg/m

m

s

2

3

2 2

3

2

2=
⋅

=
)

   

240 000

1000 2

112 000

1000
161

2

1= + ∴ =
V

V m/s

 9.  
V p V p

p
V V V1

2
1 2

2
2

1

2 2 2

2 2

4

2 2

15

2
+ = + ∴ = − =

ρ ρ
ρ ρ ρ( )

   Just inside the pitot tube: p V VT = =ρ ρ( )4 2 82 2/

   

p h p h V
V

hT1
2

2

8
15

2
+ = + − =γ γ ρ ρ γHg Hgso that ( −−

=
×

× − =

γ )

.
( . ) .V

2 0 2

1000
13 6 9810 9810 7 03 m/s

 10.  p V= ≅ × × ( ) =
1

2

1

2
1 2 120 000 3600 6672 2ρ . / Pa

   F pA= = × × =667 0 2 83 82π . . N
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Chapter 4
QUIZ NO. 1
 1. B  

 

2. C

 

ρ

π

=
×

=

∴ = × × ×

340

0 287 298
3 975

3 975 0 05 42

.
.

. .

kPa

�m 00 1 25= . kg/s

 3. D A V A V V V1 1 2 2
2

2 20 02 0 04 16 0 03 4 53= × × = × ∴ =. . . .π m/s

 

4. B

 

d V

dt

d

dt
R R

dR

dt
D

dD

dt
=

⎛
⎝⎜

⎞
⎠⎟

= =

=

4

3
4

2

0 01

3 2 2π π π

π
.

22
0 5 0 02552× × ∴ =. .

dD

dt

dD

dt
m/s  

 5. A 1000 0 02 1000 0 002 2 5 3 582
1 1× × × = × + ∴ =π . . . .V V m/s

 6. B It applies to compressible fl ow as well as incompressible fl ow.

 7. D V p p2

2

2 1 2

2 2

10
8

4
40 1000

40 10

2
= × = = + ×

−⎛
⎝⎜

⎞
⎠⎟

=m/s 7750 000 Pa

 8. C The two surfaces are sections 1 and 2.  135 25 20
2 9 81

2

= + ×
×
V

.

      ∴ =V 10 39. m/s   and  Q = × × =10 39 0 12 0 4702. . .π m /s3

 

9. A

 

Q A V V= = × × = = × =1 1
2

2

2

2
0 05 10 0 0854 10

10

20
2π . . m /s3 ..5

2 2
2
2

2

2
2

1

1

1
2

1

m/s

− = + + − − − +
�

�
W

mg

V

g

p
z

p V

g
zS
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hh

W
W

L

S
S−

×
=

−
− ∴

�
�

1000 0 0854

2 5 10

2

800 000

1000

2 2

.

.
==

= = × =

72 300

0 9 72 3 65 1

W

kW� �W WT T Sη . . .



 274 Fluid Mechanics Demystifi ed

 

10. D

 

0 04 0 05 0 02

5 09

2
1

2
2

1 2

. . .

.

= × × = × ×
∴ =

π πV V

V Vm/s and ==

+ = + =

31 8

2 2

5 09

2 1000

31 8

2
1
2

1 2
2 2

1
2

.

. .

m/s

V p V p

ρ
∴∴ =

− = −

× ×

p

p A F m V VN

1

1 1 2 1

490 000

490 000 0 0

Pa

� ( )

.π 55 1000 0 05 5 09 31 8 5 09

2780

2 2− = × × × −
∴ =

F

F
N

N

π . . ( . . )

N

 11. B Continuity: V V
y

y y y2 1
1

2 2 2

10
0 5 5

= = × =
.

        Momentum: F F m V V1 2 2 1− = −� ( )  Use F h Ac= γ

         

9810 0 25 0 5 9810
2

1000 0 5 10
52

2× × − × × = × × ×. . .w w w
y

y
y22

2
2 2

2

10

0 25 10 19
0 5

−
⎛

⎝⎜
⎞
⎠⎟

− = ×
−⎛

⎝⎜
⎞
⎠⎟

. .
.

y
y

y
or 0.. .

.

5 10 19

2 95

2 2
2

2

y y

y

+ =

∴ = m
  

 12. C − = − = = × × × =F m V V F m Vr r x r x r r
� �( ) .2 1 1

2 21000 0 03 20π 11131 N

 
13. A

 
40 30

40 30 20
1 1

1

sin sin

cos cos

° =
° = +

V

V
r

r

α
α11

1 124 79 53 8
⎫
⎬
⎭

∴ = = °Vr . .m/s α

 

14. B

 

V

V
2 2

2 2

24 79 45

20 24 79

sin . sin

cos . c

β
β

= °
= − oos

. .

.

45
17 7 81 98

1000 0 0

2 2°
⎫
⎬
⎭

∴ = = °

− = × ×

V

F

m/s β

π 11 40 17 7 81 98 40 30 4042 × × ° − ° = −( . cos . cos ) N

QUIZ NO. 2

 1.  A V A V V V1 1 2 2
2

2 20 02 0 04 16 0 03 4 53= × × = × ∴ =. . . .π m/s

 2.  5
240

0 287 413
0 2 0 2 61 72 2=

×
× × × ∴ =

.
. . .V V m/s
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3.

  

ρ ρ π ρ π1 1 1 2 2 2
1

1

1
2

1 2
2
2

2 2
1
2

4 4
A V A V

p

RT

d
V

d
V V

d
= ∴ = ∴ =

pp

d RT
V

V

1

2 2
2

1
1

2

2

2

0 32 350

3 5 0 20 0 287 31

ρ

=
×

× × ×
.

. . . 33
10 28 5× = . m/s

 4.   Assume ρ ≅ 1.22 kg/m3. For u = 40 m/s, 800 40 0 05y y= ∴ =. . m.  
Continuity gives

    

1.22 0.1× × × = + × × × +( . ) . ( . . ) .1 2 40 1 22 0 05 1 2 20 1 2�m 22 0 05 1 2 40

1 46

× × ×
∴ =

( . . )

.�m kg/s

 5.  
dm

dt

dm

dt
= × × × − − ∴ =1000 0 02 5 2 2 5 2 332π . . . kg/s

 

6.

  

− = + + − − − + =
�

�
W

mg

V

g
z

p V

g
z

p
K

V

g
VS 2

2

2
2

2

1
2

1
1

1

2

2 2 2γ γ
AA

A
V V

V

g

p V

g

p

2
2 2

2
2

2

1
2

1

16

144

0
9

2
10

2
25

=

= + + − − −
( )

γ γγ

π
1

2

2

2
2

1 88 0 06 1 88 0 021

+

∴ = = × × =

V

g

V Q. . . .m/s and 33 3m /s
     

 7.  Q A V= = × × =1 1 0 25 3 5 2 2 1 925. . . . m /s3 . For maximum power output, V
2
 ≅ 0.

   

− = + + − − − +

=

�

�

� �

W
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V
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z
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=

( . ) . W
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8.

   
− = − ∴ =

−
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−�

�
� �

W

m

p p
W m

p pS
S

2 1 1 2 0 020
120 800

ρ ρ ρ
ρ

ρ
. == −13 6. kW
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13 6
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.
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9.

  

�m A V= =
×

× × × =ρ π2 2 2
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�
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 10.  Static pressure = total pressure: p p
V

1 2
2
2

2
= + ρ

   Energy: 
−

=
−

+ − = −
�

�
W

m

V V p p VS 2
2

1
2

2

2

1

1

1
2

2 2ρ ρ

    ∴ = = × × × × × =� �W m
V

T T
1
2

2
2

2
1000 0 12 20

20

2
0 9 163 0η π . . 000 W

 11.  Continuity:  V V2 19=   Energy: 
V V1

2
1

2

2

200 000

1000

9

2
+ =

( )

    

∴ = =

= = × ×

V V

m AV
1 22 236 20 12

1000 0

. .m/s and m/s

� ρ π .. . .015 2 236 1 5812 × = kg/s

   Momentum: p A R m V Vx x x1 1 2 1− = −� ( )   R m V Vy y y= −� ( )2 1

    x-direction: 200 000 0 015 1 581 2 236 1452× × − = × − ∴ =π . . ( . )R Rx x N

   y-direction: Ry = × =1 581 20 12 31 8. . . N

     Rtotal N= + =145 31 8 1482 2.

 12.  Continuity: y y
V

V2 1
1

2

0 6 4 2 4= = × =. . m

   Momentum: F F m V V1 2 2 1− = −� ( ).  Use F h Ac= γ .

   9810 0 3 0 6 9810 1 2 2 4 1000 2 4 2× × − × × = × × ×. . . . . (w w w V V22 24− V )

    ∴ = =V V2 11 918 7 672. .m/s and m/s

 13.  F A V V Vr r x r x= − = × × × −ρ π1 1 1 2
21000 0 02 70 70 70( ) . ( coss )30 825° = N
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V
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α11
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⎫
⎬
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V

V
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20 3 95 62 2°
⎫
⎬
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N
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Chapter 5
QUIZ NO. 1

 1. A 
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u

x y y

u

x

Ay

x
= − ∴ = − = − =

v v ( )
0   Thus, v( , ) ( )x y f x=

         But, v( , )x 0 0=   so  f x x y( ) ( , ) .= =0 0and v

 2. B 
∂
∂

∂
∂

u

x y
+ =

v
0. Hence, 

∂
∂

v
y

= 0  implies that it is possible for v = f x( ).

 3. C 
D

Dt

u

x y
x x

ρ ρ= − +
⎛
⎝⎜

⎞
⎠⎟

= − + = − × +
∂
∂

∂
∂

v
2 16 8 2 16 1 8( ) ( ×× = −1 48) kg/m /s3

 4. C 
∂
∂

∂
∂

v
y

u

x

x y x x

x y

x y
= − = −

+ −
+

=
−2 2 2 22 2

2 2 2

2 2( ) ( )

( )

( ))

( )x y2 2 2+

                 ∴ =
−

+
= −

+
+∫v( , )

( )

( )
( )x y

x y

x y
dy

y

x y
f x

2 22 2

2 2 2 2 2   f(x)  =  0 since  v(x, 0)  =  0

 5. D 
1 1 1

25
1

2r r
r

r r rr

∂
∂

∂
∂θ

θθ( ) sinv
v

= − = − +
⎛
⎝⎜

⎞
⎠⎟

    ∴ = − +
⎛
⎝⎜

⎞
⎠⎟

= − −
⎛
⎝⎜

⎞
⎠⎟∫r

r
dr r

rrv 25
1

25
1

2
sin sinθ θ ++ f ( )θ

    vr r( , )0 0=   so  f(θ) = 0  ∴ = − −vr r r( , ) ( )sinθ θ25 1 2/

 6. A ρ μu
u

x

u

y

p

x

u

x

u

y

u∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
+

⎛

⎝⎜
⎞

⎠⎟
= − + + +v

2

2

2

2

2

∂∂
∂
∂

∂
∂z

p

x

u

y2

2

2

⎛

⎝
⎜

⎞

⎠
⎟ ∴ = μ

QUIZ NO. 2

 1.  The differential continuity equation 
D

Dt

ρ ρ+ ∇ ⋅ =V 0  simplifi es to

   
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

ρ ρ ρ ρ ρ
t

u
x y z

u

x y z
+ + + + + +

⎛

⎝
⎜

⎞

⎠
v w

v w
⎟⎟ = + =u

x

u

x

∂
∂

∂
∂

ρ ρ 0
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 2.  (a) 
∂
∂

∂
∂

∂
∂

u

x

u

x x u

u

x
≅ =

−
= − ∴ = − = ×

Δ
Δ

52 60

0 4
20

1 2

60
2

.

.ρ ρ
00 0 4= . kg/m4

       
(b) 

∂
∂

∂
∂

∂
∂

u

x

u

x x u

u

x
≅ =

−
= − ∴ = − = ×

Δ
Δ

60 64

0 4
10

1 2

60
1

.

.ρ ρ
00 0 2= . kg/m4

 

3.

  

∂
∂

∂
∂

∂
∂

v
v

y

u

x

u

x
yB= − ≅

−
= − ∴ ≅ − =

8 2 11 1

0 016
181 2

. .

.
. Δ −− ×
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 4.  
1 1
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r r

r
r z r
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z

r

∂
∂

∂
∂

∂
∂

∂
∂

( ) ( )v
v v

v+ + = ∴ =θ

θ
so rr C

C

rr rv v= ∴ =

 5.  
1 1 1

25
1

2r r
r

r r rr

∂
∂

∂
( ) cosv
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⎛
⎝⎜
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⎠⎟

θ
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θ
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⎞
⎠⎟

+∫r
r

dr r
r

frv 25
1

25
1

2
cos cosθ θ (( )θ

    But, vr r( , )90 0° =  so f (q ) = 0  ∴ = −vr r r( , ) ( ) cosθ θ25 1 2/

 6.  ρ
θ

ρθv
v v v

v
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z
z z
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∂
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∂
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∂
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∂
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∂
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Chapter 6
QUIZ NO. 1

 1. D [ ]ρ = = =
M

L

FT L

L

FT

L3

2

3

2

4

/

 2. C 
1 1

3 3
2

2

T

M

LT
L

M

L T

LT

M

M

L
L

d
, , , × × × ∴ =π ωρ

μ
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 3. C Viscosity is the only variable with M as one of its dimensions.

 4. A 
L

T

M

L
L

L

T
, , ,3 2 . The density cannot enter since there is only one M.

      The variables combine as V gH2 / ,  so V C gH= .

 5. B Select repeating variables V, r, H. Dimensions 
L

T

M

L
L

L

T

M

LT
, , , ,3 2

      

π π
ρ

μ
ρ

μ1 2

3 2 3

= = ∴ =
⎛

⎝
⎜

⎞

⎠
⎟

V

g H

gH V
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f

gH/

 6. D F f V L cL = ( , , , , ).α ρ  Repeating variables V, r, L.

       
π

ρ
π π α1 2 2 2= = =

F

V c

c

L
L

3   ∴ =
⎛
⎝⎜

⎞
⎠⎟

F

V c
f

c

L
L

ρ
α

2 2
,

 7. B 
V l V l

V V
l

l
m m

m

p p

p
m p

p

mν ν
= ∴ = = × =90 5 450 km/hr

 8. A Fr Frp m

p

p p

m

m m

V

l g

V
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p
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 10. B F F
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QUIZ NO. 2

 1.  μ τ μ τ= ⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

= × =
dy

du

dy

du

F

L

L

L T

FT

L2 2/

 2.  
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T
L
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T

M
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T
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M
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3 2

2
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2

2

1
, , , × × × ∴ =π

�

ΔΔ p Vd 2

 3.  [ ] [ ] [ ] [ ]V
L

T
g

L

T
h L

M

L
= = = =2 3ρ

       Since M occurs in only one variable, that variable r cannot be included in the 
relationship. The remaining three terms are combined to form a single p-term; 
it is formed by observing that T occurs in only two of the variables, thus V 2 is 
in the numerator, and g is in the denominator. The length dimension is then 
canceled by placing h in the denominator. The single p term is p = V 2/gh. 
Since this p term depends on all other p terms and there are none, it must be 
at most a constant. Hence, we conclude that

   V C gh=

 4.  [ , , , , , ] , , , , ,V l g
L

T
L L

L

T

M

L

M

LT
w ρ μ =

2 3
    

    π ρ
μ

π π ρ
μ1 2 3

2 2

= = = ∴ =
⎛
⎝⎜

⎞
⎠⎟

V

l

V

g

V
f

l

V

g

w w
w

w w
w

,

 5.  [ , , , , , , ] , , , , , ,Δ =p d V L
M

LT
L

L

T

M

LT

M

L
L Lμ ρ ε

2 3

   π
ρ

π ρ
μ

π
ε

π
ρ

ρ
μ ε1 2 2 3 4 2

=
Δ

= = = ∴
Δ

=
p

V

Vd d d

L

p

V
f

Vd d d

L
, ,

⎛⎛
⎝⎜

⎞
⎠⎟

 6.  [ , , , , , ] , , , , ,F d V g
ML

T
L

L

T

M

LT

M

L

L

TD μ ρ = 2 3 2

   
π

ρ
π ρ

μ
π

ρ
ρ

μ1 2 2 2 3

2

2 2

2

= = = ∴ =
F

d V

Vd V

gd

F

d V
f

Vd V

gd
D D ,

⎛⎛
⎝⎜

⎞
⎠⎟

 7.  Re Rep m

p p

p

m m

m
m p

p

m

m

p

V l V l
V V

l

l
= = ∴ = × × = ×

ν ν
ν
ν

50
1

10
×× =1 5 m/s
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8.

  

Fr Frp m

p

p p

m

m m

m p
m

p

m

p

V

l g

V

l g

V V
l

l

g

g

= =

∴ = × × = ×

2 2

10
1

440
1 1 58× = . m/s

   F F
l

l

V

Vp m

p

m

p

m

p

m

= × ×
⎛

⎝⎜
⎞

⎠⎟
×

⎛

⎝⎜
⎞

⎠⎟
= × ×

ρ
ρ

2 2

215 1 40 ×× =1 58 60 0002. N

 9.  M M m/sp m p m

p

m

V V
c

c
= = = × =250

325

340
239  (See Table C.3) 

   F F
l

l

V

Vp m
p

m

p

m

p

m

= × ×
⎛
⎝⎜

⎞
⎠⎟

×
⎛
⎝⎜

⎞
⎠⎟

= ×
ρ
ρ

2 2

200
0 81. 994

1 225
20

239

250
48 9002

2

.
× × ⎛

⎝
⎞
⎠ = N

Chapter 7
QUIZ NO. 1

 1. A 2000
0 02

1 8 10
1 8

5
=

×
×

∴ =−

V
V

.

.
. m/s

 2. D V
Q

A
= =

×
=

0 0002

0 01
0 6372

.

.
.

π
m/s

      L D
VD

E = × × = × ×
×

=−0 065 0 065 0 02
0 637

0 661 10
2

6
. . .

.

.ν
225 1. m

 3. B V
Q

A
= =

×
=

0 006 60

0 02
0 07962

. /

.
.

π
m/s

         Δ p
LV

r
= =

× × × ×
=

−8 8 0 656 10 20 0 0796

0 02
20 9

0
2

3

2

μ . .

.
. Pa

        Re
0.02

=
×

×
=−

0 0796

0 661 10
2410

6

.

.
. May not be laminar.

 4. C 2000
0 012

1 007 10
0 1678

6
=

×
×

∴ =−

V
V

.

.
. m/s
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Δ

Δ
p h

LV

r

h

L
+ Δ = × =

× × ×−

γ μ8
9810

8 1 005 10 0 167

0
2

3( . ) . 88

0 0062.

      
sin . .α α= = ∴ = °

Δh

L
0 00382 0 219  downward

 5. B u y
dp

dx
y by

U

b
y( ) ( )= − +

1

2
2

μ
  τ μ= = − +

du

dy

dp

dx
y b

U

b

1

2
2( )

       0
1

2

2
2

= − + ∴ =
dp

dx
b

U

b

dp

dx

U

b
( )

 6. A τ μ μ
ω
δ

τ π ω π
μ ω

δ
= = = × = =

d

dy

r
T r L r W T

r Lv 1
1 1

1
3 2

2 2�

 7. D V =
×

= =
×0 0004

0 06
0 0354

0 0354 0 12

0 92

.

.
. Re

. .

.π
m/s

××
=−10

4720
6

    ∴Use n = 6.

     u
n n

n
Vmax =

+ +
=

×
×

× =
( )( )

. .
1 2 1

2

7 13

2 6
0 0354 0 0452 2 mm/s

 8. B Re
10 0.4

2 0 4
=

×
×

=−1
20 000.

  
From Table 7.1 select n ≅ 6.5. f = =

1

6 5
0 0242.

.

     Δ p h f
L

D

V

gL= = = × × ×
×

γ γ
2 2

2
9000 0 024

100

0 4

10

2 9 81
.

. .
== 275 000 Pa

 9. C V
Q

A
= =

×
= ∴ =

×
=−

0 02

0 04
3 98

3 98 0 08

102 6

.

.
.

. .

π
m/s Re 33 18 105. ×

          
e

D
= =

0 15

80
0 0019

.
. . Moody diagram:  f = 0.024

     
h f

L

D

V

gL = = × ×
×

=
2 2

2
0 024

40

0 08

3 98

2 9 81
9 7.

.

.

.
. m

 10. C h
p

L = = =
Δ
γ

200 000

9810
20 4. m. Use the alternate equation:

           

Q = −
× ×

×
+0 965

9 81 0 1 20 4

100

0 00015

3 7 0 1

35

.
. . .

ln
.

. .

.. ( )

. . .

.
17 10 100

9 81 0 1 20 4

6 2

3

0 5
× ×
× ×

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

− ⎤⎤

⎦
⎥
⎥

= m /s30 0333.
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 11. A  Assume a completely turbulent fl ow. Moody’s diagram with e/D = 
0.15/40 = 0.00375 gives f = 0.027. The energy equation:

    
20

2
0 5

2
0 027

100

0 04 2
2 01

2 2 2

= + + × ∴ =
V

g

V

g

V

g
V. .

.
. m/ss

    Check: Re =
×

= ×−

2.01 .040

10
8 106

4. Moody diagram:  f = 0.028. OK.

 12. B R =
×

+
=

2 0 8

1 6 2
0 444

.

.
. m

        Q
n

AR S= = × × × × =
1 1

0 012
2 0 8 0 444 0 001 22 3 1 2 2 3/ / /

.
. . . ..45 m /s3

QUIZ NO. 2

 1.  V gh≅ = × × =2 2 9 81 0 2 1 981. . . m/s when the water leaves the fountain.

   Assuming T ≅ 15°C  Re
1.981 0.004

Turbulent=
×
×

= ∴−1 14 10
6950

6.

 2.  Re
( ) . ( . . )

.
= =

× × × −
×

ω δ

ν
πr

1 1000 2 60 0 02 0 022 0 02

1 8

/

110
233

5− = ∴Laminar

 3.  V
Q

A
= =

×
×

=
0 060 90 60

0 004
0 221

2

. ( )

.
.

/
m/s

π
  Re =

×
×

=−

0 221 0 008

1 007 10
17606

. .

.

     ∴Laminar LE = × × =0 065 1760 0 008 0 913. . . m  so profi le is parabolic.

 4.  τ 0
0

2

0 004 1200

2 15
0 16= =

×
×

=
r p

L

Δ .
. Pa

   Δ p
LV

r

V
V= =

× ×
= ∴ =

8 8 0 000656 15

0 004
1200 0 24

0
2 2

μ .

.
. 44 m/s

   
f

V
= =

×
×

=
8 8 0 16

992 0 244
0 02170

2 2

τ
ρ

.

.
.

 5.  Q u y dy
dp

dx
y by

U

b
y dy

b

= = − +
⎛
⎝⎜

⎞
⎠⎟

=∫ ∫( ) ( )
1

2

1

2
2

0 μ μ
ddp

dx
b b

Ub
( )3 33 2

2
/ /− +

   0
1

2 6 2

63

2
= − + ∴ =

μ
μdp

dx

b Ub dp

dx

U

b
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6.

  

u y
h

L
by y( ) ( )

.
. ( .= − =

×
× ×

1

2

1

2 0 001
9810 0 0002 02

μ
γ Δ

001

980 0 01

2

2

y y

y y

−

= −

)

( . )

    

Q y y dy= − = × ×∫ 981 0 01 80 981 80 0 01
0 0052

0

0 005

( . ) .
.. 22 3

2

0 005

3

0 00653

−
⎛
⎝⎜

⎞
⎠⎟

=

.

. m /s3

 7.  T r L r
r L

= × = =
× × ×τ π π μ ω

δ
π2 2 2

0 1 0 03 40 0 2

0 01 1
1
3 3. . .

. 0004
0 339= ⋅. N m

 

8.

  

V
e

D
=

×
= = =

0 0004

0 06
0 0354

0 00026

0 12
0

2

.

.
.

.

.
.

π
m/s 00022

0 0354 0 12

0 9 10
4720

6
Re

. .

.
=

×
×

=−

    From the Moody diagram, this is very close to a smooth pipe so the pipe is 
“smooth.”

 9.  Re
10 0.4

2 0 4=
×

×
=−1

20 000.  Table 7.1 gives n ≅ 6 5. . f = =
1

6 5
0 0242.
.

   τ ρ0
2 21

8

1

8
917 10 0 024 275= = × × × =V f . Pa

   uτ
τ
ρ

= = =0 275

917
0 548. m/s   ∴ = =

× ×
=

−

δ ν
ν

τ

5 5 2 10

0 548
0 00182

4

u .
. m

 10.  V
Q

A
= =

×
= ∴ =

×
× −

0 02

0 04
3 98

3 98 0 08

9 102

.

.
.

. .

π
m/s Re

66
43 18 10= ×.

    Moody diagram: 
e

D
= =

0 15

80
0 0019

.
.  so that  f = 0.0375

   
h f

L

D

V

gL = = × ×
×

=
2 2

2
0 028

40

0 08

3 98

2 9 81
11 3.

.

.

.
. m

 
11.

  
R

A

P
D

=
×

+ + +
== m

0 02 0 06

0 02 0 02 0 06 0 06
0 0075

. .

. . . .
.

== = × =4 4 0 0075 0 03R . . m
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Q = −
× × × × −

0 965
9 8 0 03 0 612

20

3 17 0 804 105 2 1

.
. . .

ln
. . 22

3

5
20

9 8 0 03 0 612

0 00063

×
× ×

⎛
⎝⎜

⎞
⎠⎟

=

. . .

.

.

m /s3

 12.   Assume a completely turbulent fl ow. Moody’s diagram with e/D = 0.15/80 = 
0.0019 gives f = 0.023. The energy equation is then, using    

      V
Q

A
= =

×
=

0 04

0 08
7 962

.

.
.

π
m/s

     H
g gP = + + ×0 5

7 96

2
1 0

7 96

2
0 023

200

0 08

7 962 2 2

.
.

.
.

.
.

.

22
40 231

g
HP+ ∴ = m

            ∴ = =
× × ×

=� �
W

mgH
P

P

Pη
( . ) .

.

1000 0 04 9 8 231

0 88
103 000 W  [See Eq. (4.25)]

 13.  R =
×

+
=

2 1 2

2 4 2
0 545

.

.
. m

    Q
n

AR S= = × × × × =
1 1

0 012
2 1 2 0 545 0 001 42 3 1 2 2 3/ / /

.
. . . ..22 m /s3

Chapter 8
QUIZ NO. 1

 1. A Re
.

.
= =

×
×

=−

VD

ν
35 0 041

1 42 10
101 000

5
∴C

D
≅  0.25 from Fig. 8.2 (rough)

 2. B C
F

V AD
D=

1
2

2ρ
 and p V= 1

2

2ρ   C
pA

V A

V A

V AD = =
×

=1

2
2

1

2
2

1
2

2
1 0

ρ
ρ
ρ

.

 3. D F V ACD D= = × × × × × =
1

2

1

2
1 2 10 0 1 0 2 1 1 1 322 2ρ . . . . . N  

 4. D Assume C
D
 = 0.2 (see Fig. 8.2 with Re > 4 105× ): 

      F V AC V VD D= = × × × × × ∴ =
1

2
4

1

2
1 2 0 1 0 2 32 62 2 2ρ π. . . . m/ss

          Check:  Re =
0.2032 6

1 81 10
3 6 105

5.

.
.

×
×

= ×−   Good.
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 5. C  F V ACL L= = × × × × × =
1

2

1

2
1000 15 2 2 0 5 0 8 99 0002 2ρ ( . . ) . N

 6. A Read C
L
 ≅  1.0 at 8° from Fig. 8.6.

     F W V VL = = = × × × × ∴ =120 000
1

2
1 164 20 1 0 1022. . m/s

 7. C   − = ∴ = − + = = =
∂
∂

∂
∂

ψ ψ ψ
x

x f y
y

u
df

dy
10 10 0( )

           ∴ = = −f C xand ψ 10  if we let C = 0.

 8. D   u
y

y

x y x

x

x y
= =

+
= − = −

+
∂
∂

∂
∂

ψ ψ20 20
2 2 2 2

v    

         Along x-axis, u = 0, v = −20/x.

        

V p V p
p

x x

2 2 2

22 2

1 2

2

20 240
+ = + ∴ = − ×

⎛
⎝⎜

⎞
⎠⎟

= −∞ ∞

ρ ρ
.

 9. B   ψ θ θ
= −10

40
r

r
sin

sin   r
Uc = = =

∞

μ 40

10
2  m

         vθ
ψ θ θ= − = − +

⎛

⎝⎜
⎞

⎠⎟
=

=

∂
∂r rr r cc

10
40

20
2

sin sin

 10. D   5 10
10

1 81 10
0 9055

5
× = =

×
∴ =∞

−

U x x
xT T

Tν .
. m

 11. A   τ ρ δ ρ ν
0

2 20 14 0 35= =∞ ∞
∞

. .U
d

dx
U

xU
  Drag = =∫ τ 0

0
wdx

L

             = = × ×
×

∞ ∞
−

−

∫0 7 2 8 1 2 1
1 51 10

1
2 1 2

0

4
2

5

. . .
./ρ νU U x dx/ == 0 013. N

 12. C   Use Eq. (8.82):

                 vmax max= ′ − =
×

× = ×∞
−1

2

10 0 8

3
0 8605 4 4

6ν
η

U

x
F F( )

.
. . 110 4− m/s
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QUIZ NO. 2

 1.  Re
.

.
.= =

×
×

=−

VD

ν
2 0 10

1 33 10
15 0405 L D/ /= =4 0 1 40. ;  refer to Table 8.1 (one

    end is assumed fi xed and one end free so use L/D = 80) and Fig. 8.2: 

assume a factor of 0.95 so that CD = × =0 95 1 2 1 14. . . .

 2.  Re . . .= × × = ∴ =−10 0 05 1 51 10 33 000 1 25/ CD  from Fig. 8.2. 

   F V ACD D= = × × × × × × =
1

2

1

2
1 2 10 0 1 0 8 1 25 0 67 42 2ρ . . . . . .00 N  where the 

   factor 0.67 is from Table 8.1.

 3.  F V ACD D= = × × × × × =
1

2

1

2
1 25 50 2 2 2 2 1 1 83002 2ρ . . . . N

   8300 3 1 1 34 000× + = ⋅( . ) N m. (The force on the post is negligible.)

 4.  Assume St = 0.21. 0 21
0 16 0 04

0 21
0 0305.

. .

.
.= ∴ =

×
=

f D

V
V m/s

   Re
. .

.
. .=

×
×

=−

0 0305 0 04

1 81 10
67 45  Too low. Assume St = 0.16.

   0 16
0 16 0 04

0 16
0 04.

. .

.
.= ∴ =

×
=

fD

V
V m/s   

   Re
. .

.
=

×
×

=−

0 04 0 04

1 81 10
88

5
  OK.

 5.  W = × + =2000 9 N..81 4000 23 600  The stall speed occurs with C
L
 ≅ 1.7:

   F V VL = = × × × × ∴ =23 600
1

2
1 2 25 1 7 33 32. . . m/s

 6.  
∂
∂

φ φ
x

u x x f y= = ∴ = +20 10 2 ( )

   
∂
∂

φ φ
y

y
df

dy
f y C x y= = = ∴ = + = +v 20 10 102 2 2and ( )  

   (We let C = 0.)
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7.

  
u

y

y

x y x

x

x y
a u

u

xx= =
+

= − = −
+

= +
∂
∂

∂
∂

∂
∂

∂ψ ψ20 20
2 2 2 2

v v
uu

y

u

t∂
∂
∂

+

        

= −
+

×
+ × −

+
= − ×

20 20 20 2 20

42 2

2 2

2 2 2

x

x y

x y y y

x y

( ) ( )

( )

220

4
6 252 = − . m/s2

 8.  v vr r r r
= = + = = −

∂
∂

∂
∂

φ θ φ
θ

θθ10
40 1

10cos sin . If v vr = =0 0and θ , then

   θ = ° =180 4and mr which in rectangular coordinates is (4, 0), only one point. 

 9.  ψ π
π

θ θ θ= + = +10
10

2
10 5y r sin   v vr r

= + = −10
5

10cos sinθ θθ

   Stagnation point:  q = p and r = 0.5 so that y = 5p.

   At q = p/2  ψ π π π= = + × ∴ =5 10 5
2

4y y /  m

 10.  u U
y d

dx

U y
U

U y
dy U

d
= = −

⎛
⎝⎜

⎞
⎠⎟

=∞
∞

∞
∞

∞∫δ
τ ρ

δ δ
ρ

δ

0
0

21

6

δδ
dx

   τ μ μ
δ

ρ δ δ δ μ
ρ0

0

21

6

6
= = = ∴ =

=

∞
∞

∞

∂
∂

u

y

U
U

d

dx

d

dx U
y

    or 2δ ν δ ν
= ∴ =

∞ ∞

12 3 46
x

U

x

U
.

 11.   It should be displaced outward 4d
d
 so continuity is satisfi ed. If the 

boundary layer is turbulent it would be [see Eq. (8.69)]:

    δ ν
d x

U x
x

x
= ×

⎛

⎝⎜
⎞
⎠⎟

=
×

∞

−

4 0 048 0 192
1 51 10

10

1 5 5

. .
.

/
⎛⎛
⎝⎜

⎞
⎠⎟

=
1 5

0 80 0132

/

.. x

 12.  Re
.

.= =
×

×
= ×∞

−

U L

ν
16 3

1 8 10
2 7 10

5
6   Drag = ×

⎛

⎝⎜
⎞
⎠⎟∞

∞

1
2 0 0732

1 5

ρ ν
U L

U L
w .

/

         = × × × ×
×
×

⎛
⎝⎜

⎞
⎠⎟

=
−0 073

2
1 2 16 6

1 8 10

16 3
3 42

5 0 2
.

.
.

.
.

99 N
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 13.  F U U ACD f× =∞ ∞

1

2
3ρ

              = × × × × × ×
×

×

−1

2
1 2 12 150 1000 0 073

1 8 10

12 1000
3

5

. .
.π

⎛⎛
⎝⎜

⎞
⎠⎟

=
0 2

596 000

.

W 

Chapter 9
QUIZ NO. 1
 1. C  Assume the speed of a small wave in water is 1450 m/s. The distance is 

d V t= = × =Δ 1450 0 45 652. m.

 2. B M = =
× ×

=
V

c

200

1 4 287 223
0 668

.
.

 3. D sin
1

1.68
soα α= =tan .0 7408

                  ∴ = = = + =L d
200

270 270 200 3362 2

tanα
m m  

 4. A Check: p pe = = × =0 5283 0 5283 250 132 10. . . kPa  ∴M
e
 < 1

        

250

150
1

1 4 1

2
0 886

250 000

2

3 5

= +
−⎛

⎝⎜
⎞
⎠⎟

∴ =

=

.
.

.

M M

�m ×× × ×
×

+ ×
⎛
⎝⎜

−0 886 10 10
1 4

287 293
1

0 4

2
0 8864 2. ( )

. .
.

⎞⎞
⎠⎟

=

−3

0 584. kg/s

 5. A 
A

A*
. .= =

24

10
5 76

2

2
 From Table D.1 

p

p
pe

e

0

0 01698 6 79= ∴ =. . kPa

 6. C M1 = =
× ×

=
V

c
1

1

600

1 4 287 291
1 76

.
.  so that M

2
 = 0.626 from Table D.2. 

         T2 1 502 291 437= × =. K   and

      V2 0 626 1 4 287 437 262= × × × =. . m/s
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 7. B Table D.2 provides M
2
 = 0.577. T2 1 688 288 486= × =. K

         V2 0 5774 1 4 287 486 255= × × × =. . m/s  

                V1 2 1 4 287 288 680= × × × =. m/s

         V V Vinduced = −1 2  = −680 255  = 425 m/s

 8. D At
A

A
1

2

2

20

10
4 0* .= =  in Table D.1: M kPa1 = = × =2 94 400 0299 121. , .p    

          Table D.2: At M M kPa1 = = = × =2 94 0 479 9 92 12 0 1192 2. : . . .p

 9. C M1

900

1 4 287 313
2 54=

× ×
=

.
. .  From Fig. 9.11 β = °42 .

         M M1 2n n= ° = =2 54 42 1 70 0 64. sin . .   and  

         p2 3 2 60 192= × =. kPa abs

 10. A Table D.3 at M
1
 = 2.4:  θ θ1 2 236 75 40 76 75 4 98+ = + = ° ∴ =. . .M

QUIZ NO. 2
 1.   The wave travels at a constant speed, so the time for the wave to reach the 

object is 0.23 s; the distance is d V t= = × =Δ 1450 0 23 333. m.

 2.   The speed of sound in air is approximately 340 m/s so the distance is about  

    d V t= = × =Δ 340 1 5 510. m.

 3.  sin
1

3.49
soα α= =tan .0 299

      
∴ = = = + =L d

200
669 669 200 6722 2

tanα
m m

 4.  use c = 340 m/s, r = 1.22 kg/m3.

   
c

p2 2
2

5340
5 5

340
4 33 10= ∴ = ∴ = = × −Δ

Δ Δ
Δ

ρ ρ
ρ . kg/m3



Solutions to Quizzes and Final Exams 291

   Ideal-gas law: Δ Δ Δp R T RT= +ρ ρ  

      5 1 21 287 4 33 10 287 288 0 004095= × × + × × × ∴ = °−. . .Δ ΔT T CC

   Energy: 
V

c T V V c Tp p

2

2
+ = Δ = − Δconst so  where V = c

   
Δ

Δ
V

c T

c
p= − = −

×
= − × −1 0 0 00409

340
1 20 10 5. .
. m/s

 5.  p pe = = × =0 5283 0 5283 250 132 10. . . kPa   ∴M
e
 = 1   (M

e
 > M

r
)

   Use Eq. (9.33): �m = × ×
×

× =− −250 000 10 10
1 4

287 293
1 2 0 5904 3( )

.
. . kgg/s    

 6.  
A

A

d

d*
.

( *)
.= =1 688 1 688

2

2
or   ∴ = × =d 1 688 12 15 592. . cm

 7.  From Table D.1, M
1
 = 2.64  so that  V1 2 64 1 4 287 293 906= × × × =. . m/s

   T2 2 280 293 668= × =. K  and  V2 0 5 1 4 287 668 259= × × × =. . m/s 

 8.  Table D.1: 
A

A
p1

2

2 1 1

16

10
2 56 2 47 0 0613 400 24 5* . . . .= = ∴ = = × =M  

   Table D.2: M kPa2 20 516 6 95 24 5 170 3= = × =. . . .p  

   and  p02 0 511 400 204= × =. kPa

   Table D.1: 
A

A

A

A

A

A

A

A

A

Ae e e

e2 2
2

2

8

10
1 314 2 05= × = × ∴ =

*

*
.

*

* .

   pe = × =0 940 204 192. kPa

 9.  M1

900

1 4 287 313
2 54=

× ×
=

.
. . From Fig. 9.11, β = °81

    ∴ = ° = ∴ =M M1 2n n2 54 81 2 51 0 512. sin . .

    p2 7 18 60 431= × =. kPa abs

   0 512 81 20 0 5852. sin( ) .= °− ° ∴ =M M2

   T V2 22 147 313 672 0 585 1 4 287 672 304= × = ∴ = × × =. . .K mm/s
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 10.  Table D.3 at M
1
 = 1.8: q = 20.72°  θ2 = − = °60 09 20 72 39 4. . .

   

T T
T

T

T

T

V

2 1
0

1

2

0

2

293
1

0 6068
0 2784 134

3

= = × × =

=

.
. K

.. .6 1 4 287 134 835× × = m/s  

Final Exam No. 1

 1. C F ma F M
L

T
M FT L= = ∴ =

2
2/

 2. A 2 22 2σ π ρ σ π ρL r L r Ls s> >or /

 
3. A

 

p h H H

H
w w Hg+ = + × = ×

∴ =

γ γ 40 000 9810 0 20 13 6 9810

0 3

. .

. 115 m

 4. D  F
H
 and F

V 
can be positioned at

 
the center of the circular arc (F

H
 produces 

no moment):

         P F VV= = = × × + × × =γ π9810 0 6 1 2 1 2 4 1 4 18 2002[( . . ) . ] ./ N

 5. D   a
V V V V

= + + +u
x y z t

∂
∂

∂
∂

∂
∂

∂
∂

v w

             = + + + = − − + + +2 2 2 4 2 2 4 4 2xy y t xt x x( ) ( ) ( ) ( )i j i j i i i j == +16 2i j

 6. C 
DT

Dt
u

T

x

T

y

T

z

T

t
xy y yt= + + + = − + −

∂
∂

∂
∂

∂
∂

∂
∂

v w 2 0 2( . ) ( 00 2 6 4. ) .x = − °C/s

 7. D

 
8. A

 

ρ πQ m m m

m
1 2 3

2
3

3

1000 0 01 1000 0 01 20= + × = × × × +� � �

�
. .

== 3 72. kg/s

 9. B Assume incompressible fl ow:

                 ( ) . . .0.1 m/sw w v w w v× = × + × + × ∴ =40 2 0 05 20 0 05 40 0 5

 10. A � �W H mgT T T= = − × × × × =η ( ) . .25 5 0 01 1000 9 81 1 1962 W  (let h
T

= 1) 
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11. C

 

� �W m
p p

P
P

=
−

= × × × ×
−
×

2 1 21000 0 03 4
2000 120

1000ρη
π .

00 88
24 2

.
.= kW or

32.4 hp

 12. A V V1 2
25 2= =/ m/s   

2

2 1000

50

2
1 248 000

2
1

2
2

1+ = + ∴ =
p p

p
ρ

Pa

         

− + × × = × × × −
∴

F

F
x

x

1 248 000 0 05 1000 0 05 2 50 22 2π π. . ( )

== 9050 N

 13. B − = − = × × × °−F m V Vx x x
� ( ) . ( cos2 1

21000 0 01 40 40 60 40π )) = −251 N

 14. D ρ μVR/

 15. D 
V

l g

V

l g

V

V

l

l
m

m m

p

p p

p

m

p

m

2 2

25 5= = = =

            

F

F

V l

V l
Fp

m

p p p

m m m
p= = × × ∴ = × =

ρ
ρ

2 2

2 2
2 21 5 25 4 15 625 622 500 N

 16. A τ π
= ×

× ×
=0 1

0 05 800 2 60

0 001
419 2.

.

.

/
N/m

         T AR= = × × × × = ⋅τ π419 0 1 0 25 0 05 1 64( . . ) . . N m

 

17. C

 

V
e

D
=

×
= ∴ ≅ × = =

0 02

02
15 9 6 10

26

40
006

2
5.

.
. Re

.
.

π
m/s 55

033∴ ≅f .

         
0 85

1000 0 02 9 81
5 033

40

04
1

.

. .
. .

.

�WP

× ×
= + × +

⎛
⎝⎜

⎞
⎠⎟

VV

g
WP

2

2
20 87 200+ ∴ =� W

 18. B 2
1

0 012
2

2

2 2
0 002 0 55

2 3

1 2= × ×
+

⎛
⎝⎜

⎞
⎠⎟

× ∴ ≅
.

. .
/

/y
y

y
y m

 

19. C

 

�W AV C

C C

C

D

D D

D

=

∴ =
−

× =
−

1

2

100
0 96 0

3

1 2

1

ρ

%
. .

Savings
77

0 96
100 27

.
%× =
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 20. A r
Uc = = =

∞

μ 2

2
1 m

 21. B δ ν
= =

× ×
=

∞

−

5 5
0 804 10 2

8
0 00112

6x

U

.
. m

 22. D δ ν
=

⎛

⎝⎜
⎞
⎠⎟

= × ×
×

×
⎛
⎝∞

−

0 38 0 38 2
0 804 10

8 2

1 5 6

. .
.

/

x
U x ⎜⎜

⎞
⎠⎟

=
0 2

0 026

.

. m

 23. A c kRT= = × × = = =1 4 287 288 340
600

340
1 76. .m/s M

 24. C p pe e= × ∴ =0 5283 200 106. kPa  (Use Table D.1)

 25. B M M1 =
× ×

= ∴ =
400

1 4 287 298
1 16 0 8682

.
. .    (Use Table D.2)

          T V2 21 103 298 329 0 868 1 4 287 329 316= × = ∴ = × × × =. . .K m/s

 26. D Table D.3: θ1 236 75 36 75 40 76 75 4 98= ° ° + ° = ° ∴ =. . . .M

Final Exam No. 2

 1.  
m

s
m m m /s

3
2 2 3 1 31= ⋅ ⋅ ⋅ ∴ =[ ] [ ]/ /k k

  
2.  T Ar

u

r
r L r= =

Δ
Δ

× =
×

−
×τ μ π μ π

2 0 05
2 150 60

0 05 0 048
.

. .

/
22 0 05 0 152π × ×. .  

            ∴ = ⋅μ 0 0027. N s/m

 3.  1 2 0 333 9810 0 5 1 0 2 4 3270. . ( . . . )P P= × × × × ∴ = N

 
4.

  

p p r rA A1

2

1
2 2

2
2

2

1000 150 2 60

2
0 4− = − =

× ×
×

ρ πΩ
( )

( )
.

/

∴∴ = −pA 19 740 Pa

 5.  V i j i j i j= + = × × − + × = − +2 2 2 1 2 2 4 4xy xt ( )
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( ) ( )n n n n n n n nx y x y x y x yi j i j+ ⋅ − + = ∴ = + = ∴ = =4 4 0 1

12 2

22

   n i j= +( )/ 2

 6.  
D

Dt
u

x y z t
u

x z

ρ ρ ρ ρ ρ ρ ρ
= + + + = +

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

v w w

 7.  Use the density at sea level: p V= ≅ × × =
1

2

1

2
1 2 180 000 3600 15002 2ρ . ( )/ Pa

 
        F pAmax N= = × × =1500 1 2 3000

 

8.

  

� �m m1 2

140

0 287 293

40

60

250

0 287 298
0 2=

×
× =

×
× ×

. .
.π 22

2

2 3 02

×

∴ =

V

V . kg/s

 9.  �m A V= =
×

× × × =ρ π2 2 2
2100

0 287 293
0 02 30 0 0448

.
. . kg//s

   
− =

−
+ − − = +

�

�

�W

m

V V p p WT T2
2

1
2

2

2

1

1

2

2 0 0448

30

2
28

ρ ρ .
77 293 287 473× − ×

    ∴ =�WT 2290 W    (We used  p/r = RT)

 10.  V V
y

y y y2 1
1

2 2 2

20
0 8 16

= = × =
.

  F F m V V1 2 2 1− = −� ( )

   
9810 0 4 0 8 9810

2
1000 0 8 20

162
2× × − × × = × × ×. . .w w w

y
y

y22

20−
⎛

⎝⎜
⎞
⎠⎟

   
0 64 65

0 8
0 8 652

2 2

2
2 2

2
2.

.
.− = ×

−⎛

⎝⎜
⎞
⎠⎟

+ = ∴y
y

y
y y yor == 7 65. m  

 
11.

  
60 30

60 30 20
1 1

1

sin sin

cos cos

° =
° = +

V

V
r

r

α
α 11

1 143 83 43 19
⎫
⎬
⎭

∴ = = °Vr . .m/s α
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   Additional calculations follow:

    
V

V
2 2

2 2

43 83 45

20 43 83

sin . sin

cos . c

β
β

= °
= − oos

. .
45

32 9 109 52 2°
⎫
⎬
⎭

∴ = = °V m/s β

    − = × × × × ° − °Fx 1000 0 01 60 32 9 109 5 60 302π . ( . cos . cos )) = −986 N

 12.  T f D= ( , , , , )δ ρ μ Ω

   [ ] , [ ] , [ ] , [ ] , [ ] , [ ]T
ML

T
D L L

M

L

M

LT
= = = = = =

2

2 3

1δ ρ μ Ω
TT

   

T

D

D D

ρ δ
ρ

μΩ
Ω

2 5

2

=
⎛
⎝⎜

⎞
⎠⎟

,

 13.  Viscous effects would dominate so the Reynolds number is used:

   

V D V D
Vm m

m

p p

p
mν ν

= ∴ = × =0 006 200 1 2. . m/s

 14.  
e

D
f= = ∴ ≅

0 046

60
0 00077 0 019

.
. .  (assume completely turbulent)

   

10 0 8 0 019
40

0 06
1

2
3 68

2

= + × +
⎛
⎝⎜

⎞
⎠⎟

∴ =. .
.

.
V

g
V m/s

Ree =
×
×

= ×−

3 68 0 06

1 14 10
1 9 10

6
5. .

.
.

   Use  f = 0.02 so V = 3.60 m/s  and  �m = × × × =1000 0 03 3 6 10 22π . . . kg/s

 15.  ψ θ θ μ
= − = = =

∞

5
20 20

5
2r

r
r

Ucsin
sin

m

   

vθ
ψ θ θ= − = − +

⎛
⎝⎜

⎞
⎠⎟

= −
=

∂
∂r r rc

5
20

2
10

2
sin sin

   
p pmin Pa= − = −

×
=0

2 2

2
100 000 1000

100 1

2
50 000ρ θv
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16.

  

Drag = ×
⎛

⎝⎜
⎞
⎠⎟

= ×

∞
∞

1
2 0 073

0 073

2
100

2

1 5

ρ ν
U L

U L
w .

.

/

00 5 2
10

5 2
732

6 0 2

× × ×
×

⎛
⎝⎜

⎞
⎠⎟

=
− .

N

 17.  p h= = × × =γ 9810 13 6 0 05 6670. . Pa   

   
ρ1

1

1

101

0 287 313
1 12= =

×
=

p

RT .
. kg/m3

   
T T

p

p

k

k

0 1
0

1

1
0 28

313
101 6 67

101
=

⎛
⎝⎜

⎞
⎠⎟

= ×
+⎛

⎝
⎞
⎠

−

. . 557

318 8= . K

   
c T

V
c T Vp p0

2

12
2 1000 318 8 313 108= + ∴ = × × − =( . ) m/s

 18.  M M From Fig. 9.111 2n n= ° = ∴ = =2 40 1 28 0 796sin . . θ 111°

   

M2 2 1 2

3

0 796

40 11
1 64 11 50=

°− °
= = = ° ∴ ≅ °

.

sin( )
. θ θ β

β == − = °50 11 39

   q2 is the angle through which the fl ow must turn to be parallel to the wall.

mohi_rahimi
Typewritten text
www.fluidsoroo.ir
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INDEX

AA
Absolute pressure, 7
Accelerating containers, 32
Acceleration, 46

convective, 46
local, 46

Airfoil, 52
Angle of attack, 173
Angular velocity, 48
Archimedes’ principle, 30
Average velocity, 71,136

BB
Bernoulli’s equation, 58
Blasius formula, 191
Boiling, 13
Boundary conditions, 92
Boundary layer, 52, 173, 184
Boundary-layer thickness, 167
Boundary-value problem, 92
Buckingham π theorem, 110
Buffer zone, 146
Bulk modulus, 8
Buoyancy, 30

CC
Capillary tube, 12
Cauchy-Riemann equations, 177
Cavitation, 13, 171
Cavitation number, 171
Celsius, 8
Center of pressure, 28
Chezy coeffi cient, 157
Chezy-Manning equation, 157
Choked fl ow, 211
Chord, 165, 173
Circulation, 178
Coeffi cient of thermal expansion, 19

Completely turbulent zone, 150
Complex velocity potential, 177
Compressible fl ow, 55, 203
Conductivity, 104
Conservation of mass, 71
Constant-density fl ow, 55
Constitutive equations, 98
Continuity equation, 72, 93
Control volume, 69

fi xed, 71
Convective acceleration, 46
Converging-diverging nozzles, 212
Converging nozzles, 212
Couette fl ow, 135, 136, 142
Critical area, 210
Critical Reynolds number, 54, 185
Critical zone, 149
Cylinder, drag coeffi cient, 166
Cylinder, fl ow around, 60, 182
Cylindrical coordinates, 49, 93

DD
Darcy-Weisbach equation, 132
Defl ection angle, 220
Defl ectors, 79
Density, 6
Derivative, 47
Detached shock, 223
Developed fl ow, 51, 125
Differential continuity equation, 96
Diffusivity, 105
Dilatant, 10
Dimensional analysis, 108
Dimensional homogeneity, 108
Dimensions, 2
Discharge, 72
Displacement thickness, 188, 192, 197
Doublet, 178, 180
Drag, 164

coeffi cient, 165
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Drag coeffi cients for blunt objects, 168
Droplet, 12
Dynamic similarity, 116

EE
Effi ciency

pump, 75
turbine, 75

Energy equation, 15, 74, 104
Energy grade line, 155
Entrance length, 126
Equivalent length, 152
Euler number, 113
Expansion fan, 224
Expansion waves, 224
External fl ow, 52

FF
First law of thermodynamics, 15, 73
Flow fi eld, 44
Flow rate, 72
Fluid statics, 21
Forces on surfaces, 27
Free stream, 164
Free-stream fl ow, 54
Free-stream velocity, 185
Friction factor, 132, 147
Froude number, 113

GG
Gage pressure, 7
Gas constant, 15
Geometric similarity, 116
Gravity, 2

HH
Harmonic function, 177
Head, 58, 75
Head loss, 74, 132,148
Hydraulic grade line, 155
Hydraulic jump, 84
Hydraulic radius, 151
Hydrofoil, 171

II
Ideal-gas law, 14
Incompressible fl ow, 55
Induced velocity, 215
Initial conditions, 92
Inviscid core, 126
Inviscid fl ow, 52, 173
Irrotational fl ow, 47, 176
Isentropic fl ow, 208
Isentropic process, 15
Isotropic fl uid, 100

KK
Kinematic similarity, 117
Kinematic viscosity, 11
Kinetic-energy correction factor, 75

for turbulent fl ow, 75
Kutta-Joukowski theorem, 184

LL
Lagrangian description, 44
Laminar boundary layer, 189
Laminar fl ow, 53, 132
Laplace equation, 176
Lift, 164

coeffi cient, 165
Line source, 178
Local acceleration, 46
Local skin friction coeffi cient, 190, 197
Loss coeffi cient, 74, 152
Losses, 148

MM
Mach angle, 207
Mach cone, 207
Mach number, 55, 113, 174
Mach wave, 207
Manning n, 157
Manometer, 25
Mass fl ux, 72, 187
Material derivative, 47
Mean free path, 6, 17
Metric units, 4
Minor loss, 152

coeffi cient, 153
Momentum correction factor, 79
Momentum equation, 78, 93
Momentum fl ux, 187
Momentum thickness, 188, 192, 197
Moody diagram, 149

NN
Navier-Stokes equation, 101, 130
Newtonian fl uid, 10, 100
Newton’s second law, 2
Non-Newtonian fl uid, 10
Normal pressure changes, 61
Normal shock waves, 214
Normal stress, 5, 98
No-slip condition, 10, 52
Nozzle fl ow, 208

OO
Oblique shock waves, 219

strong, 222
weak, 222



One-dimensional fl ow, 51
Open channel fl ow, 156
Outer region, 146

PP
Parabolic profi le, 128
Parallel plate fl ow, 133
Path lines, 45
Piezometer, 58
Pipe fl ow, 129
Pitot-static tube, 59
Pitot tube, 59
Plane fl ow, 51
Plastics, 10
Poiseuille fl ow, 129, 131, 135, 136
Power-law profi le, 146
Prandtl boundary-layer equation, 195
Prandtl-Meyer function, 226
Pressure, 6, 22

absolute, 7
gage, 7
stagnation, 58
static, 58
total, 58

Pressure head, 58,75
Product of inertia, 29
Profi le development length, 126
Pump effi ciency, 75
Pump head, 75

QQ
Quasiequilibrium, 15

RR
Ratio of specifi c heats, 15
Relative roughness, 149
Repeating variables, 112
Reynolds number, 54, 113, 127
Reynolds transport theorem, 70
Rotating cylinders, 34, 183
Roughness elements, 150
Rough wall, 146

SS
Separated fl ow, 163
Separated region, 60
Separation, 60
Shaft power, 74
Shear stress, 5, 98
Shear velocity, 145, 192
Shock waves, 207, 214

detached, 223
normal, 214
oblique, 219

Similitude, 108, 116
SI prefi xes, 4

Skin friction coeffi cient, 190, 197
Smooth pipe, 146
Sound wave, 205
Source strength, 178
Specifi c enthalpy, 14
Specifi c gravity, 9
Specifi c heat, 15
Specifi c internal energy, 14
Specifi c weight, 8
Speed of sound, 15, 55, 205
Sphere, drag coeffi cient, 166
Sphere, fl ow around, 60
Spherical coordinates, 49, 93
Stagnation point, 58
Standard atmosphere, 7
Static pressure, 58
Steady fl ow, 44, 53
Stokes fl ow, 166
Stokes hypothesis, 100
Streakline, 45
Stream function, 176
Streamline, 45
Streamtube, 45
Stress vector, 5
Strouhal number, 113, 169
Subsonic fl ow, 207
Substantial derivative, 47
Superimposed fl ows, 181
Supersonic fl ow, 207
Supersonic nozzle, 217
Surface tension, 11
Swamee-Jain formulas, 150
System, 69
System-to-control volume, 68

TT
Temperature, 8
Thermal conductivity, 104
Thermal diffusivity, 104
Time average, 143
Torque, 10
Total head, 58, 75
Transition, 127
Transition zone, 149
Turbine effi ciency, 75
Turbine head, 75
Turbulent boundary layer, 191
Turbulent fl ow, 53, 143
Two-dimensional fl ow, 51

UU
Uniform fl ow, 51, 178, 179
Units, 3

VV
Vacuum, 8
Vanes, 79–81
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Vapor pressure, 13
Velocity fi eld, 44, 46
Velocity gradient, 9
Velocity head, 58, 75
Velocity potential function, 176
Viscometer, 10
Viscosity, 9
Viscous fl ow, 52
Viscous length, 145
Viscous wall layer, 126, 144, 186
von Karman integral equation, 188
Vortex, 178, 180
Vortex shedding, 169
Vortex strength, 178
Vorticity, 48

WW
Wake, 164
Water hammer, 55
Wave speed, 206
Weak shock wave, 222
Weber number, 113
Wedge angle, 220
Wetted perimeter, 152
Wingspan, 174
Work, 16

ZZ
Zone of silence, 207
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