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Introduction



About this book

You will find in this book is exactly what is written in the title: you will
learn to use python to solve civil/mechanical related engineering problems.
This might seem difficult at first, especially if you have never used python
before, but really there is no need to worry. I have seen plenty of people
(my colleagues, mostly) start from zero and get to the point where they use
python every day in very little time. Once you start learning, you will
realize how much potential this language has, and where it can sit in your
everyday workflow. Personally, since I have started using python I have
stopped using many of the programs that where my everyday go-to. Why?
because with python I can do everything much quicker, and in a much more
efficient way. For example, I can do all my calculations and typeset them
automatically in a pdf document, complete with images and tables, ready
for print. This means that there is non need to write all the results by hand,
which saves time and leaves less room for errors to seep in.
What you will learn by reading this book is very practical knowledge, and
that is why I have decided to structure the learning experience as a series of
real world examples. I wanted to keep everything as closely related to
engineering as possible, so apart from the first chapters where I explain the
basics of the language, what follows is a compendium of code snippets that
you will certainly find useful in your work environment. But what are the
examples about? I come from a structural civil engineering background, and
this book is targeted mostly toward people who have studied (or are
studying) civil or mechanical engineering. There are examples about
member design, forces diagrams plotting, section verification, finite
element analysis, and much more. I hope you will follow trough all of them,
and apply your newly acquired skills in real life.
The source code of every example in this book can be downloaded from
https://python4civil.weebly.com/book-resources.html

https://python4civil.weebly.com/book-resources.html


For whom is this book written for?

Broadly speaking, this book is targeted to anybody who wishes to learn a
solid programming language and use it in civil and mechanical applications.
However, even if you come from another field of study, you will find in
here really useful cross-disciplinary techniques that you can apply in your
specific field of expertise. If I had to pinpoint a group of people who I think
would benefit greatly from this book, my choice would fall on those who
rely heavily on Excel for their work. Everything you do in Excel can be
done in python, and in a much more efficient way. If you have ever
designed a concrete beam using Excel, then you know that the spreadsheets
can become quite overcrowded in a very short time. Essentially, if you fall
in one of these categories, then this book is for you:

You want to transition from Excel to something faster and
more flexible;
You want to learn how to use python for practical engineering
applications;
You are a university student looking for a well-explained set
of examples on designing structural elements;
You want to use python in your work environment, but you
still wish to share Excel documents and tables with your
colleagues;
You want to learn how to automatically create professionally
formatted reports from your calculations, and export them in
LaTeX or pdf format;
you want to learn how to plot beautiful graphs and diagrams



Why python?

Python is a versatile and powerful programming language. It's open source
and free for everybody, and has a huge community who constantly adds
new features in the form of libraries. This means that python offers a vast
set of tools that is constantly being updated and kept bug-free. But most
importantly, despite being a full-fledged programming language, it's really
easy to use. The syntax is quick and efficient, so you need few lines of code
to achieve complex tasks. Finally, one of the big advantages of python are
Jupyter notebooks. Jupyter is the programming environment that will be
used throughout this book, and it's a real powerhouse: with it you can write
code, display tables and images, alternate between blocks of formatted text
and code, and much more. However it's only when one starts to use the
language that the true extent of the applications becomes apparent. Upon
reading this book you will find out where you can apply what you have
learned, and start creating your own applications.



Prerequisites needed to follow this book

What you will absolutely need to follow through the examples given in the
next chapters is:

To know basic Microsoft Windows usage
To know high school level calculus and linear algebra
To know basic Excel usage

In addition, it would certainly help if you knew the following engineering-
related modules:

Solid mechanics;
Theory of structures;
Structural analysis and design;

These are not strictly necessary, as I will try to explain the technical stuff as
clearly as possible, however the examples in this book rely heavily on these
subjects.



Python basics



Setting up the environment

The first part of this book is intended to be a Python crash course: first we
install all the software needed, then we move on to programming basics. The
goal is to you with all the tools necessary to progress through the rest of the
book, so it's very important that you follow through and understand everything
that is written here. It will be useful, during the more technical parts subsequent
to this one, to come back here every time you don't remember some particular
Python syntax.

installing Anaconda

One of the easiest ways of getting python up and running on your computer is
using the Anaconda distribution. Anaconda comes pre-packed with the most
popular libraries for python (so you won't have to install them yourself), and
also Jupyter, which is the notebook environment that we will use to write code.
the instructions given here are intended for Microsoft Windows, but the same
overall process applies for other operating systems. In order to install Anaconda:

Open your web browser and navigate to
https://www.anaconda.com/download and select your operating
system;
Select the version of Python that you wish to download. At the
time this book was written, the latest version supported by
Anaconda was Python 3.7. DO NOT download a version that uses
Python 2, as some of the examples written in this book work only
with Python 3;
Once the installer has finished downloading, open it and follow
the instruction to install Anaconda. I suggest leaving the default
path as the destination folder.

Once Anaconda has finished installing, open Anaconda Navigator by typing
"Anaconda navigator" in your computer's search bar. You will be greeted by a
window that looks similar to the one in the next figure:

https://www.anaconda.com/download


Anaconda navigator is essentially a hub from where you can access various
Python coding environments. Qt console is a command line type of editor,
Spyder is a scripting editor, and finally Jupyter is a notebook editor. This is the
one we are going to use, so click launch to open up Jupyter Notebook.
This will open your default browser and display your computer's folder tree. In
the address bar there should be written http://localhost:8888/tree. From this
window you can navigate within the folders of your computer, open existing
Jupyter notebooks, and create new ones.

Using Jupyter notebooks

To create a new Jupyter notebook, navigate to a folder of your choice and
selectnew>python3 from the top right-hand of the screen. This will create a new
Jupter notebook in the folder you have selected. Your browser should then
display something similar to what you see in the next image:



Jupyter is a notebook environment, which means that you have to write code
inside cells. The frame in the previous image that says "In" is a cell. If the frame
is highlighted in blue, it means that the cell is selected and ready to be edited.
Before we start writing some code, let's go over the various tools and drop-down
menus that Jupyter offers, so that you have a clear idea of how the interface
works.

from the File menu you can open, save, rename, export, and close
notebooks;
from the Edit menu you can copy, cut, merge, move, and delete
cells;
from the View menu you can customize the appearance of the
interface;
from the Insert menu you can insert a new cell above or below the
one that is currently selected;
from the Cell menu you can select various options to run the cells
in the notebook. For example you can run a single cell, or the
entire notebook. In addition, from this menu you can change the
cell's type;
from the Kernel menu you can manage the notebook's kernel. The
kernel is basically the computational engine that runs the code
written in the cells. It also stores all the variables you declare in
your code;
from the Widget menu you can manage the notebook's widgets,
which are essentially extensions that can be installed to expand the
capabilities of Jupyter;
from the Help menu you can start a user interface tour (I suggest
you try it), open various reference manuals and display the
shortcut window.

The icons below the menu let you quickly select some of the tools present in the
drop-down menus described above. Let's focus our attention on the little drop-
down window that says "code": from here we can change the cell's type from
code to \markdown. Markdown is a typesetting language used to format your
notebook. Usually, a well formatted notebook is made out of both code type
cells and markdown type cells. The first contain all the various algorithms and
calculations, the second contain text that explains what the code does, or that



displays the result of the \emph{code} cells. Let's leave the cell's type to
\emph{code} for now, and click inside the frame of the cell. The frame turns
green: we can now write some code inside it. Let's write

1 print("Hello World!") 

Hello World!

and click the Run button. Congratulation, you have written a python program!
Notice that the output of the cell is displayed below the code. A cell does not
necessary display an output: if there are no instructions to do so in the code, the
cell will simply run without showing anything.
Now that we got the classic "hello world" example out of the way, we can start
to explore the functionalities that python offers to its users. In the next few
chapters you will learn how the syntax of the language works, and how to use
some of the libraries that are available. It's important, if you have never used
the libraries, that you follow through the examples given. This chapter will
provide you with all the tools necessary to understand the code in the next more
engineering-related parts of the book.

NOTE

From now on, when you wish to run one of the examples presented in
this book, simply write the code in an empty cell and run it. I suggest
writing the examples yourself, since simply copy-pasting them won't
be much effective if you want to understand how they work.



Python syntax

Now we will go over the main elements that constitute the Python language.

Comments

Comments are lines of code that are ignored upon execution. They are used to
comment and explain what the code does, in order to keep everything as clear as
possible. The next code cell shows how to use them:

1 
2 
3 
4

# This is a single line comment 
 
'''This is a
multiline comment'''

as you can see python offers two ways of writing comments. The first one uses
the \# symbol to write a single line comment, the second one uses the '''
sequence of characters to open and close a multiline comment.

Variables and datatypes

Variables are containers in which you can store values. The main types of data
structures that are built-in in python (and that can be used without loading any
library) are:

int: integer numbers;
float: floating point numbers;
bool: boolean-type values (True or False);
string: sequences of characters;
list: python's built-in arrays;
dict: Dictionaries;
tuple: tuples;

Let's go ever them in detail.



Integer numbers

This datatype represents integers, meaning numbers without decimal values.
Select an empty code cell and write the lines given in the next code snippet:

1 
2 
3 
4

a=1 
b=2 
c=a+b 
print(c) 

3

We assign the values $1$ and $2$ to the variables a and b, then we sum them
and store the result in variable c, and finally we print the value of c. a and b are
integer values, and since c is the sum of two int-type objects, c it's an integer as
well. As you may have guessed, the print function is used to display the value of
whatever argument you put between the parentheses.

NOTE

Additions, subtractions and multiplications of integers will always
result in an int-type result. Divisions between integers however will
always result in a floating point value.

Floating point numbers

This datatype is used to represent, to put it mathematical terms, real numbers.
They can be specified by using a decimal point, or using scientific notation.
Let's take a look at the next piece of code:

1 
2 
3 
4 
5 
6

a=1.0 #this is a floating point number 
b=12.345 #this another floating point number 
c=2.4e5 #this is floating point number  
 #specified using scientific notation
print(type(a)) 
print(c/b) 

<class 'float'> 19441.069258809235



The function type() is used to retrieve the dtype of a certain object within the
code. This function however does not print its output: we can achieve that by
nesting the type and the print methods inside one another. As you can see,
floating points numbers in python are called floats.

Boolean values

Boolean values are like switches, they can be either True or False. They are
really useful when specifying conditions in your code, as will be explained
later. The next code cell shows how to define boolean values:

1 
2 
3

a=True  #this is a bool value 
b=False #this another bool value
print(type(a)) 

<class 'bool'>

Strings (str)

Strings are sequences of characters, and are used to represent text. You can open
and close a string by using either the '' characters or the "" characters. If you
want to use one of these characters inside the string, simply add a backslash \
before the character you want to insert in the string. It's much better to
understand these concepts by seeing them in action, so let's take a look at the
next piece of code:

1 
2 
3 
4 
5 
6

string_1="Hello" 
string_2='World' 
string_3="The quick 'brown' fox jumps \"over\" the lazy dog"
print(string_1) 
print(string_2) 
print(string_3) 

Hello
World
The quick 'brown' fox jumps "over" the lazy dog

As you can see in line 3, it's possible to use a ' character inside a string that has
been specified with the " character. However if the string has been specified
using " and we want to insert that same character inside it, we have to precede "
with a backslash.



Now let's talk about string concatenation and formatting.

1 
2 
3 
4

a="Hello"+" World" 
b=2+2
print(a) 
print("The result of 2+2 is: {0}".format(b)) 

Hello World
The result of 2+2 is: 4

Python lets the user concatenate strings using the plus sign, an operation that
we will be using a lot throughout this book. In line 4 of code the previous code
cell we see another very powerful feature: string formatting. With the .format()
method python lets you insert variables within a string, in the places specified
by the numbers between the curly brackets. The method .format() can accept
multiple arguments, as shown in the next code cell:

1 
2 
3

a=12 
b=3
print("a={0} and b={1}".format(a,b)) 

a=12 and b=3

This time we pass two variables to the format function that are inserted in the
string at the positions specified by the curly brackets. Since a is the first
argument that we pass to .format(), it will be inserted in the position specified
by the curly brackets that contain 0, and since b is the second argument,it will be
inserted in the position specified by the curly brackets that contain a 1.
String formatting can also be achieved with a different method that uses the %
symbol:

1 
2 
3

a=2.3847567838 
b=5
print("a=%.2f and b=%d"%(a,b)) 

a=2.38 and b=5

This time the positions in the string where a and b need to be inserted are
identified by %.2f and %d. The letter f specifies a floating point number, and the
letter d specifies an integer number. By writing %.2f we are telling python that



we want to display a floating point number stopping at the second decimal
point.
This type of operation will be used a lot in the next chapters, as a way to better
visualize the results of the calculations.

Lists (list)

Lists are used to represent a sequence of objects. If you have used other
programming languages before, you can think of lists as arrays in which you can
store any type of data you want. This includes integers, floating point numbers,
strings, other lists, and so on. If you haven't used another programming
language before, think of lists as vectors or matrices, depending on the
dimension of the list itself. Let's now go over some examples, in order to
understand how to create lists and how to use them.
In the next code cell we see some of the basic operations that involve lists:

1 
2 
3 
4 
5 
6 
7

myList1=[1,2,3,4] # this creates a list of integers 
myList2=["hello", 2, 4.15, myList1] 
mat=[[1,2,3,4],[5,6,7,8],[9,10,11,12]] 
 
print(myList1) 
print(myList2) 
print(mat) 

[1, 2, 3, 4]
['hello', 2, 4.15, [1, 2, 3, 4]]
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

As you can see, lists are just collections of objects specified using square
brackets and commas. You can nest lists one inside another to create
multidimensional data structures, like you see in line 3 of the previos code
snippet. Next, we explore how to retrieve data from lists:

1 
2 
3 
4 
5 
6

a=[2, 4, 16, 32] 
print(a[0]) #prints the first element of a 
a[1]="hello" # assign 'hello' to the second position of a
print(a) 
b=[[3,6],[9,12]] 
print(b[0][1]) #prints element in position 0,1 of b



2
[2, 'hello', 16, 32]
6

To access a value within a list, use the square brackets to specify the index of
the element you wish to retrieve. In python, lists are indexed starting from zero,
so the first element is in position 0, the second is in position 1, and so on. If you
have a previously defined list and you wish to change one of its values, simply
assign the new value to the position you want like you see in line 3 of the
previous code cell. If a list is multidimensional, like the one defined in line 5, to
access a specific position you need use two sets of square brackets (line 6).
Lists have also built-in methods that you can use to perform operations on their
content. Let's explore the most useful of these functions:

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16

a=["dog", "cat", "lion"] 
 
a.append("seal") 
print("append: {0}".format(a)) 
 
a.insert(2, "ant") 
print("insert: {0}".format(a)) 
 
a.remove("dog") 
print("remove: {0}".format(a)) 
 
a.pop(3) 
print("pop: {0}".format(a)) 
 
a.extend(["apple", "pear"]) 
print("extend: {0}".format(a)) 

append: ['dog', 'cat', 'lion', 'seal']
insert: ['dog', 'cat', 'ant', 'lion', 'seal']
remove: ['cat', 'ant', 'lion', 'seal']
pop: ['cat', 'ant', 'lion']
extend: ['cat', 'ant', 'lion', 'apple', 'pear']

To access an object's built-in functions in Python we use "." followed by the
name of the method. A "method" is just a built-in function of whatever object
you are using (in this case a list). Confronting the input and output of the
previous code panel you can get a pretty solid idea of what each of these



functions does, and I invite you to experiment with them in order to fully
understand their behaviour. Let's go over them anyway, together with some
other functions provided by python for lists:

append(element): Adds element at the end of the list;
clear(): Deletes all the elements from the list;
copy(): Returns a copy of the list;
count(value): Returns the number of elements equal to value;
extend(iterable): Attaches the iterable object specified at the end
of the list. An iterable, in Python terms, is any object that can be
seen as a collection of other objects. This includes, for example,
lists and strings (a string is just a collection of characters);
index(value): Returns the position of the first element of the string
that corresponds to value;
insert(pos, element): Adds element in the position specified by
pos;
pop(pos): removes the element in the position specified by pos. If
pos is not specified, removes the last element of the list;
remove(value): Removes the first element of the list that
corresponds to value;
reverse(): Reverse the order of the elements in the list;
sort(): Sorts the elements in the list.

Dictionaries (dict)

Dictionaries are similar to lists, except that they are unordered. Each element in
a dictionary has a key associated to it that acts like its name. To retrieve an
element from a dictionary, you call the key associated with that element. Let's
take a look at the next code cell:

1 
2 
3 
4 
5 
6 
7

mydict={"object" : "beam", 
        "material" : "steel", 
        "type" : "IPE120", 
        "h" : 120, 
        "b" : 64} 
 
print(mydict["material"]) 



steel

Dictionaries are specified using curly brackets, and each key is associated with
the corresponding value. When you want to access one of the values of the
dictionary, you need to use its key. Since they have similar built-in methods as
lists, we won't go over them again.

Tuples

Tuples are collection of objects that are ordered and unchangeable. This means
that after you create a tuple you won't be able to modify its values in any way.
the next code snippet shows how to create a tuple and use the only two methods
provided for them by python:

1 
2 
3 
4 
5 
6 
7

mytuple=(1,2,3,"apple",5) 
print(mytuple) 
 
print(mytuple.count("apple")) 
print(mytuple.index(5)) 
 
print(mydict["material"]) 

(1, 2, 3, 'apple', 5)
1
4

As you can see, tuples are specified like lists, except they use round brackets
instead of curly brackets. The two methods that can be used on a tuple are count
and index. The first counts the number of elements within the tuple that
correspond to the argument passed, the second returns the position of the first
occurrence.
You might ask yourself what is the point of tuples if python already has lists.
Well, tuples are used mostly when returning values from functions, and can be
unpacked into separate variables. All of this will be explained later when we
start talking about functions.

Conditions and statements

Python, like all other programming languages, gives the user the possibility of
running pieces of code only when a specific condition is met. This is done



through IF statements, which evaluate a proposition and execute the next
chunk of code based on whether that proposition was true or false. The next
code cell gives an example of an IF statement:

1 
2 
3 
4 
5 
6 
7

x=3 
y=5 
 
if x<y: 
    print("x is smaller than y") 
else: 
    print("x is greater than y") 

x is smaller than y

First, we assign values to variables x and y. Then the IF statement is introduced
by using the keyword if followed by the condition x<y. If x is indeed smaller
than y, then the first block of code is executed. If not, the block of code that
follows the keyword else is executed. If there is no else keyword after the IF
statement, and the condition is False, then the code written inside the statement
will be ignored. This example also introduces a very important concept,
explained in the next paragraph.

Python indentation

In other programming languages, the indentation of the code is merely a praxis
to make it more readable. In python, indentation is instead used to specify
blocks of code, and is mandatory for the code to work. Note that line 5 of the
previous code snippet is indented: that's because it represents the block of code
that the IF statement will execute if the condition x < y is true. Notice that a
block of code will always be introduced by a semicolon, like we see at the end
of line 4.

Python conditions

We find in python all the usual logical conditions found in math:

Equals: a == b
Not equals: a != b
Greater than: a > b



Greater than or equal to: a >= b
Less than: a < b
Less than or equal to: a <= b

Where a and b are two predefined variables.

NOTE

A common mistake that inexperienced programmers make is that
they forget to use two equal signs to specify an equals condition. The
single equal sign is used to assign values to variables, NOT as a
conditional statement!

The ELIF statement and logical operators

What if we want to specify more IF statements one after another? This is what
the ELIF statement is for:

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10

beam = {"mat" : "steel", "E" : 210000} 
 
if beam["mat"] == "concrete": 
    print("This is a concrete beam") 
elif beam["mat"] == "steel": 
    print("This is a steel beam") 
elif beam["mat"] == "wood": 
    print("This is a wooden beam") 
else: 
    print("I do not recognize the material") 

This is a steel beam

The ELIF statements uses the same syntax as the IF statement, and can be called
as many times necessary. The ELIF chain can be closed by an optional ELSE
statement, that will be executed if all the conditions written before resulted to be
False.
Next we learn about logical operators, used to combine multiple conditions
together. Let's take a look at the next code cell:



1 
2 
3 
4

a, b, c = 1, 2, 3 
 
if a < b and b < c: 
    print("a<b<c") 

a<b<c

Before discussing the IF statement, let's examine the first line: this is a
shorthand notation used to assign a set of values to a set of variables. It simply
stores 1 in a, 2 in b and 3 in c. Moving on, in line 3 we see the logical operator
and. This operator returns True only when both the conditions associated with
it are True. In this case, since the conditions a<b and b<c are indeed both true,
the code inside the IF statement is executed. In python there are three logical
operators:

and: returns True if both statements are True;
or: returns True if at least one of the two statements is True;
not: used to reverse the result of a condition (e.g. not(True) will
return False)

Shorthand notation

The IF statement can also be written using only one line of code. It's important
that you know how to use this type of notation as well, although it's not strictly
necessary. A lot of on-line examples use shorthand notation, so knowing how it
works will certainly help you better understand them. Let's take a look at the
next code cell:

1 
2 
3 
4

x, y = 10, 5
if x>y: print("x>y") 
print("x>y") if x>y else print("x<y") 
print("x>y") if x>y else print("x=y") if x==y else print("x<y") 

x>y
x>y
x>y



First, we assign two values to x and y, using the same shorthand notation that
we already saw in code previously. In line 3 we see the shorthand notation for a
single IF statement: it's the same as a normal IF statement, except we write the
code in one single line. In line 3 we see the shorthand notation for the IF-ELSE
statement. This one is a little bit different, because the order in which the
condition and the code to execute are written is reversed. The first print
command is executed if x>y, otherwise the code that follows the keyword else is
executed. Having understood this, it should be easy to read the fourth line: this
is the shorthand notation for a statement that normally would use the elif
keyword. Instead of stopping the chain after the else keyword, we pass another
shorthand IF statement that uses exactly the same notation as the one in line 3.

Python operators

An operator is simply a keyword that performs a certain operation on a given
value. In Python there are seven types of operators:

Arithmetic operators;
Assignment operators;
Logical operators
Comparison operators;
Identity operators;
Membership operators;
Bitwise operators

Arithmetic operators

Arithmetic operators are used to perform the basic mathematical operations that
we all know. The next table gives a synopsis of their usage, for x=13 and y=4

Operator Name Expression Result

+ Addition x + y 17

- Subtraction x - y 9

* Multiplication x * y 52



/ Division x / y 3.25

% Modulus x % y 1

** Exponentiation x ** y 28561

// Floor x // y 3

NOTE

Notice that exponentiation is performed using two multiplication
symbols, NOT using the ^ symbol like in other programming
languages.

Assignment operators

Python assignment operators are a form of shorthand notation that can be used
when we want to perform an operation on a single variable, and assign the result
to that same variable. This type of operation is shown in code the next code
cell:

1 
2 
3 
4

x=3
print(x) 
x=x+2 #the result of x+2 is stored in x
print(x) 

3
5

Let's take a look at line 3. Python first performs the operation x+2, where x is
equal to 3. Then the result of the addition is stored in x, that from this point on
has a value of 5. Assignment operators perform this exact same task, except
using less code. An example is given in the next code snippet:

1 
2 
3 
4

x=3
print(x) 
x+=2 #the result of x+2 is stored in x
print(x) 

3
5



In line 3, += represents the addition assignment operator. Python provides the
user with assignment operators for all the major mathematical operations. Given
x=3, the most important are:

Operator Expression Equivalent Result

+= x += 2 x = x + 2 5

-= x -= 2 x = x - 2 1

*= x *= 2 x = x * 2 6

/= x /= 2 x = x / 2 1.5

%= x %= 2 x = x % 2 1

**= x **= 2 x = x ** 2 9

//= x //= 2 x = x // 2 1

Comparison and logical operators

We have already seen these kinds of operators when we talked about conditions.
Please refer to that paragraph for an explanation of their usage.

Membership operators

Membership operators are used to check if a certain subset of values is present
in a larger collection. For example, they can be used to see if a certain number
appears in a given list. Let's see what the next code snippet does to get a clear
understanding of this type of operator:



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13

a=3 
b=12 
myList=[1,2,3,4,5] 
 
if a in myList: 
    print("a is in myList") 
else: 
    print("a is not in myList") 
     
if b in myList: 
    print("b is in myList") 
else: 
    print("b is not in myList")     

a is in myList
b is not in myList

As you can see, we use the keyword in to check if a and b appear in myList. In
this case both a and b are integer numbers, however membership operators
work also with strings, dictionaries and tuples. If python finds an occurrence of
the specified value inside the collection, it will return True. If you want to check
if a particular subset of values does not occur inside a collection, you can use
the keyword not in instead, that will return False when said subset is found.

For loops

For loops are used to iterate through a sequence, be it a list, a string, a
dictionary, etc., or to perform a repetitive operation a certain number of times. A
for loop is introduced with the keyword for, followed by an iterator, followed
by an iterable object. The block of code that comes after that is run again and
again at each iteration of the for cycle. Let's take a look at the enxt code cell:

1 
2 
3 
4

myList=[2,4,8,16] 
 
for i in myList: 
    print(i) 

2
4
8
16



First, we create an iterable object, in this case a list called myList. Then we
iterate through that object using a for loop: in this example, at each iteration the
variable i (the iterator) changes its value to match the one in myList. Since
myList has a length of 4, the print command is executed four times, one for
each iteration of the for cycle.

The range() function

The range function is used to create a sequence of numbers that go from 0 to a
certain value, and can be very useful in for loops as a way to repeat an operation
a specific number of times. But actions speak louder than words, so let's take a
look at the next code cell:

1 
2

for i in range(3): 
    print(i)) 

0
1
2

If we pass the range function the value 3, the variable i takes a value that goes
from 0 to 2, in other words 3-1.

NOTE

The range(n) function creates a sequence that goes from 0 to n-1,
NOT from 0 to n or from 1 to n.

You can use range to cycle through the members of a list:

1. myList=[2,4,8,16]
2. list_length=len(myList)
3. for i in range(list_length):
4.     print(myList[i])

2
4
8
16



Let's break this down line by line. First, we create a list called myList. Then in
line 2 we use a function that we haven't met before, the len function. What len
does is return the length of any iterable object that you pass to it. In this case,
since myList has four elements in it, len will return the value 4, which is then
stored inside the variable list_length. When we invoke the for loop in line 3, we
pass list_length to the range function, thus creating a for loop that iterates from
0 to 3. The iterator i can then be used to access each element of myList one
after the other.
This is very common modus operandi for any programming language, so please
take the time to fully understand the previous code snippet.

The break and continue statements

Using the break statement we can stop a loop at a certain iteration:

1 
2 
3 
4

for i in range(5):     
    if i==3: 
        break 
    print(i) 

0
1
2

As you can see, the loop gets interrupted as soon as i is equal to 3. Any code
inside the for loop that comes after the break statement is ignored.
The continue keyword is instead used to jump to the next iteration of the cycle:

1 
2 
3

for i in range(5):     
    if i==3: 
        continue

0
1
2
4

This time when i is equal to 3 the print order for that iteration is ignored
(because it comes after the continue statement) and the program jumps at the
next iteration, where i=4.



Functions

The last element that we are going to discuss in this brief introduction to Python
is functions. Even if you haven't programmed before, you may be familiar with
the concept of function thanks to other subjects like math. A function is an
element that takes some inputs, performs operations on them, and returns an
output. When writing an algorithm, functions are useful because they save a lot
of lines of code, and help to conceptualize what the various elements of the
program do. For example, say you are writing a program that calculates the
deflection of a beam. Well, you need to know the moment of inertia of the
beam's section in order to do that. The best way to approach this problem is to
write a function that takes the beam's geometrical properties as inputs, uses
them to calculate the moment of inertia, and outputs the result. So every time
you want to calculate a moment of inertia you don't need to write the whole
formula, you can simply call the function that you have previously written.
Now let's see a few examples written in python. In the next code cell we write a
function that calculates the area of a trapezoid:

1 
2 
3 
4

def area(B, b, h): 
    return (B+b)*h/2 
 
myArea = area(3,1,2) 

4.0

A function is defined using the keyword def, followed by its name, followed by
the function's inputs. In this case, we create a function called area that takes
three inputs:

B is the bottom base of the trapezoid;
b is the top base of the trapezoid;
h is the height of the trapezoid.

Notice that after the inputs there is a semicolon. This introduces the indented
block of code that is executed when the function is called, in this case the
formula of the trapezoid's area. The keyword return is used to specify what's



the output of the function: whatever follows that keyword is what the function
will return. In line 4 we see how a function is called. Simply write the name of
the function specified previously followed by the arguments. The output of the
function is stored in a variable called myArea, which is later printed using print.

NOTE

don't be confused by the fact that in code \ref{code:functions1} the
variables B, b and h don't have a value assigned to them. The
variables used within a function's definition only get assigned a value
when the function is called later in the code, in this case at line 4.

Variable scope

The scope of a variable is the space within the code where that variable is
accessible. It's very important to understand this concept, otherwise it will
become the source of many errors later on. In python, and in many other
programming languages, variables can be distinguished in two groups: global
and local. Global variables are accessible from everywhere in the code, local
variables are accessible only within the block of code where the have been
declared. For example, if you declare a variable inside a function, the value
stored in that variable will only be accessible from within the function. This
means that if you try to run the following block of code you will get an error:

1 
2 
3 
4 
5 
6

def myFunc(a): 
 myVariable = 1 
    return a**2 
res=myFunc(4) 
print(myVariable) 
print(res) 

This happens because the print function is trying to access the value of
myVariable, but myVariable has been declared inside a function definition,
and therefore cannot be accessed outside of it. Let's see what this other piece of
code does:



1 
2 
3 
4 
5 
6 
7

myVariable = 5
def myFunc(a): 
 myVariable = 1 
    return a**2 
res=myFunc(4) 
print(myVariable) 
print(res) 

5
16

This might seem strange: first we store 5 inside myVariable, then we change
that value to 1 in line 4. So how come when we call print(myVariable) python
displays 5? Because the myVariable declared outside of myFunc is a
completely different object from the myVariable declared inside of it. They
have completely different memory allocations, and after the block of code
written inside myFunc has finished running, the myVariable declared inside of
it is destroyed. In this example, the myVariable created in line 1 is a global
variable, and the myVariable created in line 3 is a local variable.

Function parameters

The parameters of a function are what you put between the parentheses when
you first declare it. When you later call the function from somewhere else in the
code, you need to specify a value for all the parameters that appear in the
function's definition, otherwise you will get an error. But what if you want a
certain parameter to have always a specific value that can be changed to
something else only when needed? This is what default value parameters are
for. the next code cell shows how to use them:

1 
2 
3 
4 
5 
6 
7 
8

def myFunc(radius, perimeter=False): 
    if perimeter==False: 
        return 3.14*radius**2 
    else: 
        return (3.14*radius**2, 2*3.14*radius) 
 
print(myFunc(4)) 
print(myFunc(4, perimeter=True)) 

50.24
(50.24, 25.12)



We want to create a function that returns the area of a circle, and when needed,
its perimeter as well. In line 1 we define a function called myFunc that takes the
obligatory parameter radius and the optional parameter perimeter, by default
set to False. As you can see it's really easy to specify default parameters, all you
have to do is give them a default value in the function definition. Inside the
body of the function there is an IF statement that is used to check whether the
user has set perimeter to True while calling the function. If not, and perimeter
is set to false, we simply return the area of the circle using the formula
A=3.14r2. If instead perimeter is set to True, in line 5 we return a tuple that
contains the area in the first position, and the perimeter in the second. Tuples are
useful when you want a function to return more than one single value. When we
call myFunc in line 7 specifying only the radious parameter, the function
returns only the area of the circle. But if we call myFunc setting perimeter to
true, the function returns the tuple specified in line 5.

Unpacking

When a function returns a tuple, you can unpack its contents and store each
entry of the tuple into separate variables. Using The same function called
myFunc defined previously, the output can be unpacked like this:

1 
2 
3

area, perimeter=myFunc(4, perimeter=True) 
print(area) 
print(perimeter) 

50.24
25.12

In line 1, when calling myfunc, the output is automatically unpacked inside the
variables area and perimeter.



Conclusions

You now have all the knowledge you need to read and understand most of the
syntax that you will ever find in a python code. However, the vast majority of
python programs use libraries to expand the capabilities of the language, and
indeed libraries are what you will be using in every example of this book. In the
next chapter you will learn how to use probably the most widely-known library
of python, numpy.



Numpy

In this chapter you will learn how to use a library called NumPy, which is the
most widely used tool to manage operations that involve arrays. Virtually
every python program uses this library in some way or another. Since it is, as
you might say, the "industry standard" in every branch of science and
engineering that uses python, you can rest assured that it will stay relevant for
many years to come. In this chapter we will first go through a quick
introduction to NumPy that pinpoints the functionalities of the library that are
most useful, then a practical example is provided.



The NumPy library

As previously stated, the NumPy library is mainly used to create and edit
arrays. An array is a data structure similar to a list, with the difference that it
can contain only one type of object. For example you can have an array of
integers, an array of floats, an array of strings and so on, however you can't
have an array that contains two datatypes at the same time. But then why use
arrays instead of lists? Because they are faster, they have more functionalities,
and they better represent mathematical concepts like vectors and matrices.
What NumPy does is provide the user with a powerful object called ndarray
(but generally referred to simply as array) that expands the functionalities of
Python quite a bit.

Importing the library

In Python, when you want to use an external library like NumPy, you have to
import it before you can access its functionalities. Usually you would also
need to install it first, but luckily Jupyter has all the libraries that we need pre-
installed. Open Jupyter, create a new jupyter notebook, write the following
code in an empty cell and run it:

1 
2 
3

import numpy as np 
a=np.zeros((4)) 
print(a) 

[0. 0. 0. 0.]

To load a library, we need to use the keyword import. Then we can specify an
abbreviation for that library that will be used throughout the code, using the
keyword as. In line 1 we import numpy, and we assign the nickname "np" to it.
This way it will be enough to write "np" followed by whatever function you
need in order to acces the library's functionalities. In this example we create an
array of zeros using NumPy's built in method zeros, that takes as input a tuple
that specifies the dimensions of the array to be created. We want a one-
dimensional array of four elements, so the tuple will just contain 4.



NOTE

From this point on, in the code examples written in this chapter the
line import numpy as np will be omitted. They will all work, as
long as you have already imported NumPy in another cell.

Creating arrays

You can create NumPy arrays from lists and tuples with the function array().
Let's see how it works:

1 
2 
3 
4

a=np.array([1,2,3,4]) 
b=np.array([[1,2],[3.5, 4.2]]) 
print("a={0}".format(a)) 
print("b={0}".format(b)) 

a=[1 2 3 4{]}
b=[[1. 2. ]
[3.5 4.2]]

In line 1 we pass the array function a lists of integers, so NumPy creates an
array of integers. In line 2 we pass a multidimensional list that contains both
integers and floats, and as you can see NumPy automatically converts the int
values to float, because an array can contain only one type of data}.
If you know the dimensions of an array that you are going to need, but you
want to populate its positions later, you can create arrays of zeros or ones:

1 
2 
3 
4

a=np.zeros((3)) 
b=np.ones((2,3), dtype=int) 
print("a={0}".format(a)) 
print("b={0}".format(b)) 

a=[0. 0. 0.]
b=[[1 1 1]
[1 1 1]]

The functions ones() and zeros() take as inputs a tuple that specifies the
dimensions of the axes of the array. In line 2 we pass the tuple (2,3), in order to
create an array of ones with two lines and three columns. Both zeros() and



ones() can take the additional parameter dtype, which is used to specify the
dtype of the elements in the array. When we create b we specify int as the
dtype, so b will be composed of integer values.
To create an array that contains a sequence of numbers that goes from a
starting value to an ending value, you can use the linspace() function:

1 
2

a=np.linspace(1,10,6) 
print("a={0}".format(a)) 

a=[ 1. 2.8 4.6 6.4 8.2 10. ]

linspace takes as arguments the starting point, the ending point and the number
of elements of the sequence that you want to create. In the previous code cell
we create an array that goes from 1 to 10, composed by 6 evenly spaced
values.
A function similar to linspace()is arange(). Instead of specifying the number
of elements between the start and end positions, with arange() you need to
specify a step:

1 
2

a=np.arange(1,10,1) 
print("a={0}".format(a)) 

a=[1 2 3 4 5 6 7 8 9]

Retrieving an array's dimension and dtype

When you need to retrieve information about an existing array, NumPy offers
the following methods:

ndarray.ndim: returns the number of axes of the array;
ndarray.shape: returns the dimensions of the array as a tuple.
Essentially it returns the number of elements in each axis;
ndarray.size: the total number of elements in the array;
ndarray.dtype: returns the dtype of the elements of the array.



Let's see these methods in action:

1 
2 
3 
4 
5

a=np.array([[1,2],[3,4]]) 
print(a.ndim) 
print(a.shape) 
print(a.size) 
print(a.dtype) 

2
(2, 2)
4
int32

As you can see, a is composed by int32-type objects. This is one of the various
int-type objects provided by NumPy, and it represents a 32-bit long integer.
You generally don't need to worry about which type of integer or float NumPy
is using, as long as you recognize that it is indeed an int or float.

How to access and modify the elements of an array

NumPy arrays are indexed starting from zero like lists, however the syntax
used to access a certain value within an array is a little bit different. Let's take a
look at the next code cell:

1 
2 
3 
4 
5

a=np.array([2.45, 3.75]) 
a[0]=16 
b=np.array([[0,1],[2,3]]) 
print(a[0]) 
print(b[1,1]) 

16.0
3

To access an element of an array we use the square brackets like we did for
lists. Notice that when we need to retrieve a value from a two-dimensional
array like b, we specify the position of the element using only one set of square
brackets, in this manner:
[i,j]
If you remember, for lists the same operation was made using this syntax
instead:
[i][j]



Be careful not to confuse the two! As we did for lists, we can change the value
stored at a certain position of the array, like we see in line 2.

Mathematical operations between arrays

NumPy performs mathematical operations between arrays in a element-wise
fashion. This means that the arrays must all have the same number of elements
in them, otherwise you will get an error. The next code cell shows some of the
possible operations that can be performed:

1 
2 
3 
4 
5 
6 
7 
8

a=np.array([1,2,3,4]) 
b=np.array([2,4,8,16]) 
print(a+b) 
print(a-b) 
print(a*b) 
print(a/b) 
print(a**2) 
print(np.sqrt(b)) 

[ 3 6 11 20]
[ -1 -2 -5 -12]
[ 2 8 24 64]
[0.5 0.5 0.375 0.25 ]
[ 1 4 9 16]
[1.41421356 2. 2.82842712 4. ]

If you have used Excel before, you may have noticed that the operation in line
3 is smilar to summing two columns of a spreadsheet. These kinds of
operations between arrays are very common, and indeed very useful. but what
if you wanted to perform the matrix product instead of the element-wise
multiplication? Then you would use @ instead of * as the multiplication
symbol:

1 
2 
3

a=np.array([[1,2],[3,4]]) 
b=np.array([[2,4],[8,16]]) 
print(a@b) 

[[18 36]
[38 76]]

Array slicing



Array slicing is used to perform operations only on certain parts of a given
array. The next code cell shows the most commonly used slicing operations for
one-dimensional arrays:

1 
2 
3 
4

a=np.linspace(0,10,11) 
print(a) 
print(a[2:5]) 
print(a[1:8:2]) 

[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
[2. 3. 4.]

As you can see we can use semicolons to print only the elements between a
starting point and an ending point an an array. Moreover, in line 3 we see how
to select elements at certain intervals: the syntax 1:8:2 means "take every
second element of a between the positions 1 and 8".
For multidimensional arrays the syntax is the same, except each axis of the
array can be sliced independently. To understand what this means, let's go over
the next code cell:

1 
2 
3 
4

mat=np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]) 
print(mat[:,2]) 
print(mat[3,:]) 
print(mat[:,2:4]) 

[ 3 7 11 15]
[13 14 15 16]
[[ 3 4]
[ 7 8]
[11 12]
[15 16]]

In line 2 we select all the lines using the semicolon, and only the third column
by passing 2 as the positional index for the second axis. Line 3 is similar,
except it selects the fourth line of the matrix. The print order in line 3 displays
the third and fourth columns instead.

NOTE



You may have noticed that when slicing using the semicolon,
NumPy cuts the array from the starting position to the ending
position excluded. This is why line 4 of the previous code cell does
not give an error, even tough the index 4 is out of bounds for an
array with 4 columns. (remember that arrays are indexed from 0!)

Array union and concatenation

The functions hstack and vstack can be used to merge two or more arrays:

1 
2 
3 
4 
5

a=np.array([1,1]) 
b=np.array([2,2]) 
c=np.array([3,3]) 
print(np.hstack((a,b,c))) 
print(np.vstack((a,b,c))) 

[1 1 2 2 3 3]
[[1 1]
[2 2]
[3 3]]

and append and insert can be used to add new elements inside the array:

1 
2 
3 
4 
5 
6

a=np.array([1,2,3]) 
print(a) 
a=np.append(a,4) 
print(a) 
a=np.insert(a,2,7) 
print(a) 

[1 2 3]
[1 2 3 4]
[1 2 7 3 4]

As you can see, append adds an element at the end of an array, and insert adds
an element at a certain position. The second argument of insert can be an
iterable object (like a list or another array) that specifies more than one
position where to add the element specified by the third argument. Both
append and insert take the optional argument axis, used to specify the axis
along which the operation must be performed.



NumPy offers many other functionalities on top of the ones explained in the
previous sections. So many, in fact, that they would require a separate book to
be explained in their entirety. In the next chapters we will introduce some of
them, however we will focus our attention only on the ones that are most
useful and relevant to the practical goals that we have.



EXAMPLE: calculating the internal forces of a
beam using NumPy

We can finally move on to the first practical example of this book. In this
section many of the concepts that have been explained before will come
together, hopefully giving you a hint of their possible practical applications.
Since this is the first time we use Python (and Jupyter) in a more structured
way, the following example will be very simple from an engineering point of
view, and yet very useful to understand the functionalities explained in the
previous chapters.

Problem definition

The goal of this example is to calculate the bending moment and shear of
simply supported beam using NumPy. The beam is shown in the next figure:

q
A B

l
Where:

q=20 kN/m
l=5 m

How to input the problem's quantities in Python

The first step to solve many problems using a computer is simply to store the
various given quantities in variables, so that they can be used throughout the



code. But before we can do that, we have to load NumPy, so we can use its
functionalities:

1 import numpy as np

It's common practice to put all your library-loading code lines in the first cell
of the notebook, to keep it separated form the rest. Remember to run this cell at
least once before you run other cells that contain NumPy functionalities,
otherwise you will get an error!
In the next cell, we store the length of the beam and the value of the distributed
load in two variables:

1 
2

l=5 #m 
q=20 #kN/m

Notice how each quantity has its own unit of measure written as a comment
next to it. This may seem a bit superfluous given the simplicity of the problem,
but it will most certainly become a necessary habit when tackling more
difficult applications. It's common practice to keep code inputs in their own
cell as well, so that you know where to find them in case you need to modify
them. From this point on, however, it's up to you to decide how to organize
your code. Keep in mind that the easier it is to understand your code, the easier
it is to find bugs.

Calculating the bending moment and shear

The beam's ground reactions and coordinate system are shown in the next
figure:

q

x
y
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The equilibrium equations are:



solving the system we obtain

so the bending moment M and the shear V of the beam will be equal to

Our goal is to translate all of these equations in Python language, and obtain
two vectors named M and V that contain the value of the bending moment and
the shear of the beam for x that goes from A to B. All of this is done in the next
code cell:

1 
2 
3 
4

x=np.linspace(0,l,20) 
 
M=q/2*(l*x-x**2) 
V=q*(l/2-x) 

[ 0. 12.46537396 23.54570637 33.24099723 41.55124654
48.47645429 54.0166205 58.17174515 60.94182825 62.32686981
62.32686981 60.94182825 58.17174515 54.0166205 48.47645429
41.55124654 33.24099723 23.54570637 12.46537396 0. ]

In line 1 we create the x coordinate using the NumPy function linspace. As
you can see we pass l as the ending value and 20 as the number of steps,
meaning that NumPy will create a vector of evenly spaced numbers that go
from 0 to l, which in this case is equal to 5. From this point on it's just a matter
of copying the formulas: NumPy will perform all the operations element-wise,
so M and V will be arrays composed of 20 elements each, corresponding to
every coordinate value contained in x.
If you are familiar with Excel, you can think of x as a column of values to
which you apply the formulas in lines 3 and 4, in order to obtain two new
columns containing the values of M and V.



Later in this book we will learn to use Matplotlib to plot various graphs and
diagrams. For now, just copy and paste the following code in an empty cell to
display M and V:

1 
2 
3 
4 
5

from matplotlib import pyplot as plt 
plt.figure(figsize=(10,4)) 
plt.plot([0]*len(x), color='k') 
plt.plot(-M) 
plt.plot(V) 

The result will be a graph similar to this:
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the graph is still pretty basic, but it is enough to understand that the values of
M and V are correct.



Conclusions

Numpy is one of python's most useful libraries. Throughout this book you will
encounter it often, and the same goes for pieces of code that you might find on
the internet. This is especially true for engineering-related problems, where the
need to manage vectors and matrices is very common. Next, you will learn
how to perform symbolic calculations using sympy.



Sympy



Computer Algebra Systems

Computer Algebra Systems (CAS) allow the user to perform symbolic
calculations. What we have seen so far were only numerical calculations,
because when evaluating a formula each variable had a value assigned to it
so that it could return a numerical result. Suppose we had a function like
this one:

and we wanted the computer to calculate the derivative for us, keeping x as
a symbol. Well, this is exactly what Computer Algebra Systems are for.
In Python the most widely used CAS is SymPy. It can store formulas and
variables as symbolic expressions, and perform symbolic operations on
them. Given f(x), SymPy would be able to calculate f'(x) as an expression,
returning

SymPy is a vast and powerful library, and in this book we will only go
through its most useful and powerful functionalities. At the end of this
chapter you will have at your disposal a solid set of tools to perform
symbolic calculations.



Importing the library

As we did when we first imported NumPy in the previous chapter, we're
going to import SymPy specifying an abbreviation for it. In an empty cell
write the following code:

1 
2 
3 
4

import sympy as sp 
sp.init_printing(use_latex="mathjax") 
display(2+sp.sqrt(3)) 
display(sp.sqrt(32)) 

In line 1 we import the library, and in line 2 we tell Jupyter how to print
SymPy's expressions. More specifically, we want the expressions to be
printed in LaTeX format, and we want to use Mathjax to render LaTeX.
Lines 3 and 4 use the command display to print two SymPy expressions.
The output will be written in a beautiful LaTeX format. We could use print
instead of display, but then the output wouldn't be as pretty and easy to
read.

NOTE

LaTeX is a typesetting language, and is in fact the lingua franca
for creating beautiful expressions and scientific documents. Don't
worry if you have never used it, for now it's just a way to display
prettier outputs in the cells. The second part of this book will give
more informations about LaTeX in Jupyter notebooks.



Symbols

SymPy lets the user define the symbols that will be used during symbolic
calculations. You can think of them as undefined variables, created using
the command symbols().

1 
2 
3 
4 
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a, b=sp.symbols("a b") 
expr1=a+b 
expr2=expr1**2 
display(expr1) 
display(expr2) 

In line 1 we create two symbols, a and b, by passing the symbols()
function a string that contains the names of the variables. Each symbol in
the string is separated by a space and corresponds to one of the variables on
the left of the equal sign. From this point on, the variables a and b will be
symbolic, and any operation that involves them will return a symbolic result
as well.



The subs() command and numerical
evaluation

Suppose that you have created a symbolic expression, and you want to
substitute its symbols with numbers. This kind of operation is done using
the subs() method: let's see how to use it.
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x, y=sp.symbols("x y") 
f=x**2+y**2+sp.Rational(1,3)*x*y 
display(f) 
res1=f.subs(x,1) 
display(res1) 
res2=f.subs([(x,1), (y,5)]) 
display(res2) 
display(res2.evalf(5)) 

After creating the symbols x and y, we define the expression f as seen in
line 2. The function sp.Rational is used to specify a rational number, in this
case 1/3. Now we want to substitute 1 to x: in order to do this we use the
.subs() method, specifying the variable that we want to substitute and its
value. This operation results in a new expression that is stored in res1. Note
that when res1 is printed out in line 5, x has been substituted with 1. In line
5 we do the same thing again, except this time we substitute both x and y.
This is done by passing the .subs() command a list of tuples containing the
variables and the values in pairs. Finally we use the .evalf() command to
collapse the whole expression in one single float value. The argument of
.evalf() specifies the number of digits of the output.



Calculus

Derivatives and integrals are very common operations in engineering, so
let's see how SymPy deals with them:
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x=sp.symbols("x") 
expr=x**2+sp.Rational(1,2)*x-5 
display(expr) 
derivative=sp.diff(expr,x) 
display(derivative) 
integral1=sp.integrate(expr,x) 
display(integral1) 
integral2=sp.integrate(expr,(x, 0, 3)) 
display(integral2) 

The code is pretty self-explanatory. To perform the derivative of expr with
respect to x, simply pass expr and x as arguments to sp.diff(), as shown
in line 4. The indefinite integral is performed using sp.integrate(), and
the arguments are the same as sp.diff(). To calculate the definitive
integral you need to group the integration variable with the two extremes of
integration in a tuple. Line 8 show an example of this kind of operation,
where we integrate expr with respect to x between 0 and 3.



Solvers

Solvers are one of the most powerful tools of SymPy.They are used to solve
various types of equations, something that engineers often need to do in
their professional work.

Equations

In SymPy, equations are defined using the Eq() command. These equations
can then be used as inputs for the various solvers that SymPy provides in
order to find the solutions. Note that it's wrong to specify equations using =
or ==.
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x=sp.symbols("x") 
my_eq=sp.Eq(x**2-4,0) 
display(my_eq) 
sp.solveset(my_eq,x) 

In the previous code snippet we create an equation called my_eq, and then
we pass it to solveset(), which is the main solver of SymPy.

NOTE

It is often superfluous to use Eq() to define an equation. Most of
the times it's faster to write the equation as f(x)=0 and pass f(x)
straight to the solver. By default, if the solver receives an
expression as input, it will automatically add =0 at the end of it,
and solve the equation accordingly.

The solveset command



The main function that SymPy uses to solve algebraic equations is solveset,
to which the user can pass an equation written in the form of an Eq instance
or an expression that will automatically assumed to be equal to 0. The next
code cell gives two examples:
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x=sp.symbols("x") 
res1=sp.solveset(sp.cos(x)*2, x) 
display(res1) 
 
res2=sp.solveset(sp.Rational(2,5)*x+3, x) 
display(res2) 
display(res2.args[0]) 

Line 2 shows how to use solveset() to solve the simple equation
2cos(x)=0. Notice how the cosine is specified using the SymPy function
sp.cos(), and how we don't need to add =0 at the end of the expression.
The lines 5 and 6 show how to solve an equation and retrieve the result
using the .args argument. But why use .args instead of writing, say,
res2[0]? Because the results of solveset() aren't lists, but rather data
structures defined by the library itself. In the example above, the result is
what SymPy calls a FiniteSet, which isn't in itself an iterable object. To
acces the values stored in a FiniteSet, you need to use .args, and pass the
index of the result you want to retrieve.

Systems of equations: linsolve and nonlinsolve

SymPy can of course also solve systems of equations. It gives the user the
ability to solve linear systems using linsolve(), and nonlinear systems
using nonlinsolve(). The syntax is very similar solveset, only you need to
pass a list of equations instead of just one and a tuple containing the



unknown terms. The next code cell gives an example of how to use these
two modules:
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x, y=sp.symbols("x y") 
res1=sp.linsolve([x+y-4, x-y-9], (x,y)) 
display(res1.args[0]) 
 
res2=sp.nonlinsolve([2*x**2+3*x-y-1, 3*x+2*y-5],(x,y)) 
display(res2) 

For the scope of this book, the tools presented in the section above are more
than enough. Next up, we will learn how to use pandas to manage data
structures.



Pandas

Up until now we have encountered four types of data structures: lists, dictionaries, tuples and
numpy arrays. These are useful when the data they handle is relatively simple, especially numpy
arrays are designed to work fast with regular matrices. But what if you need to import data from
an Excel spreadsheet? or if you want to structure, filter and categorize the data contained in a
table? Well, that is exactly what pandas is designed to do: handle big, complex data structures
with ease.
The main tool that pandas provides to the user is a new type of structure called a DataFrame.
Think of it like a 2D data structure with headers for both columns and rows. It allows the user to
perform all kinds of operations on the values contained within, from simple slicing to complex
interpolation schemes. In the next sections we will go through the main features of pandas, all of
wich will be used extensively in the following chapters of this book.



Dataframes

The best way to understand how pandas works is to create a simple dataframe and use it to test
the functionalities of the library.

Creating a dataframe

We create a simple 3x3 dataframe called df that will be used for the next examples:
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df=pd.DataFrame({"A":[4,2,6], "B":[9,1,8], "C":[5,7,4]}, 
                   index=[1,2,3]) 
display(df) 

A B C
1 4 9 5

2 2 1 7

3 6 8 4

The function pd.DataFrame() allows the user to initialize a dataframe column by column. By
looking at the output of the previous code cell, it is easy to understand how the syntax works: a
dictionary (the part contained in the curly brackets) is used to define the various columns, while
the optional parameter index is used to specify the label assigned at each row. Note that the
length of index must be equal to the length of the columns of data.

Creating a dataframe from a NumPy array

This is a very common operation, and the syntax is pretty straight forward:
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import numpy as np 
mat=np.random.randint(0, 10, (4,4)) 
numpy_df=pd.DataFrame(mat, columns=['A', 'B', 'C', 'D']) 
numpy_df 

A B C D
0 2 5 0 7

1 4 6 8 9

2 4 0 7 5

3 3 0 7 0

In the first line we import numpy, since so far we had only imported pandas. Then we create an
array of random integer numbers from 0 to 10 with shape (4,4) called mat. In line 3 we create
the dataframe numpy_df using the values stored in mat, specifying the column names. This is
not mandatory: without the colums argument pandas would have created a dataframe with
column names ranging from 0 to 3.



Reshaping the data of a dataframe

Pandas offers numerous functions to manage the rows and columns of a dataframe, so let's take a
look at those that are used most often.

sort_values

This function is used to sort the rows in a specific order. For example, using the dataframe df
created previously:

1 df.sort_values("B") 

A B C
2 2 1 7

3 6 8 4

1 4 9 5

As you can see, the rows have been sorted in ascending order with respect to the values
contained in the column B. Notice that the index of the dataframe has been affected as well, and
the indices remain "connected" to their corrispective row.

NOTE

It's important to specify that with functions like sort_values the new configuration of
the dataframe is not saved. In order to maintain the new configuration you must call
the function and assign the result to the dataframe, like so:
df=df.sort_values("B")

rename

with rename you can assign new names to the rows and columns of the dataframe:

1 
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df.rename(columns={"A": "col. 1", "B": "col. 2", "C":"col. 3"},  
             index={1:"row 1", 2:"row 2", 3:"row 3"}) 

col. 1 col. 2 col. 3
row 1 4 9 5

row 2 2 1 7

row 3 6 8 4

drop

you can use drop() to remove columns and rows from a dataframe:

1 df.drop(columns={"B"}, index={1,3}) 



A C
1 4 5

3 6 4

Sometimes, after deleting a row from a dataframe, you might want to reset the index so that each
row is named with a number, starting from zero. This is because deleting a row in the middle of
a dataframe will cause the index to become discontinuous. You can solve this problem by calling
reset_index():
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df=pd.DataFrame({"A":[2,1,5], "B":[3,5,6], "C":[3,6,8]}) 
df=df.drop(1) 
display(df) 
df=df.reset_index(drop=True) 
df 

A B C
0 2 3 3

2 5 6 8

in line 2 we use drop to delete the second line of the dataframe. Notice how deleting rows simply
requires to pass drop() the position of the row you wish to remove. However, after doing this
the index is no longer a series of subsequent integers. To fix this we call reset_index, specifying
that we don't wish to keep the previous index as a column by setting the argument drop to True.

concat

If you have two dataframes that you want to concatenate together, you can use concat:
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df1=pd.DataFrame({"A":[4,2], "B":[9,1]}, 
               index=["row 1","row 2"]) 
df2=pd.DataFrame({"A":[5,3], "B":[7,9]}, 
               index=["row 3","row 4"]) 
res=pd.concat([df1, df2]) 
res 

A B
row 1 4 9

row 2 2 1

row 3 5 7

row 4 3 9

By default, concat concatenates dataframes along axis 0, stacking them vertically. Notice that in
the example above both dataframes have the same columns A and B. This ensures that the
columns are going to stack properly: if you try to concatenate two dataframes with different
columns pandas will raise an error.



To stack dataframes horizontally, simply add the argument axis=1 to the function call. In this
case the dataframes must have the same index instead.

Extracting data from a dataframe

A common operation performed on dataframes is slicing, something that we have already
encountered while discussing numpy arrays.The concept is the same, but the syntax is a little bit
different. Let'create a random dataframe and test some of the functionalities that pandas offers
for this task:
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df=pd.DataFrame(np.random.randint(0,10, (3,5)),  
   columns=["a", "b", "c", "d", "e"]) 
df 

a b c d e
0 4 2 2 0 4

1 3 5 7 9 5

2 9 4 9 5 9

Now let's see how to select specific columns from a dataframe.

1 
2

display(df[["a", "c"]]) 
display(df.filter(regex="b")) 

a c
0 4 2

1 3 7

2 9 9

b
0 2

1 5

2 4

To select some of the columns of a dataframe, simply pass a list containing their names, as we
see in line 1. To select the columns that match a certain expression, use the filter function. the
regex argument stands for "regular expression", which means that pandas is going to search the
columns whose name match the expression specified by regex. In the example above, we ask to
select the column named b. This is pretty basic, however using regex you can specify much
more complex criterions. Here are some examples:

"\,": Finds strings containing a comma ","
"size$": Finds strings ending with the word "size"
"^size": Finds strings beginning with the word "size"
"^b[1-3]$": Finds strings beginning with "b" and ending with 1,2,3



loc and iloc

These two commands are used to slice both rows and columns of a dataframe. The syntax is
pretty similar to what we saw for numpy arrays, as you can see from the next code cell:

1 
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display(df.loc[:, "b":"d"]) 
display(df.iloc[2, 3] 

b c d
0 2 2 0

1 5 7 9

2 4 9 5

5

The difference between loc and iloc is that with loc you must use the names of the columns and
the rows, while with iloc you basically treat the dataframe like a NumPy array specifying the
rows and columns with numbers. In the first line we tell pandas that we want to extract data from
every row (using :) and from the columns ranging from b to d (using "b":"d"). In the second
line we use iloc select the element in position (2,3) in the dataframe.

NOTE

Slicing with loc returns a pandas dataframe, but slicing with iloc returns a number.

Creating a dataframe with complex headers

Sometimes it is useful to structure data in a more comprehensive way other than simple rows and
columns. This is where the MultiIndex function comes into play. In the next code snippet we
create a 4x4 dataframe with a nested header and index that we will use in later examples.
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header=pd.MultiIndex.from_tuples([("A", "x"), ("A", "y"), 
                                ("B", "u"), ("B", "v")]) 
ind=[np.array(["M", "M","N", "N"]),  
     np.array(["bar", "foo", "baz", "qux"])] 
data=np.array([[9,4,8,5],[4,4,0,1],[5,7,4,5],[6,6,2,2]]) 
df=pd.DataFrame(data, columns=header, index=ind) 
df 

A B
x y u v

M
bar 9 4 8 5

foo 4 4 0 1

N
baz 5 7 4 5

qux 6 6 2 2



As you can see, before we create the dataframe we must first create the header and index. We
use the function pd.MultiIndex.from_tuples to build the header, passing a list of tuples that
defines the hierarchy of the columns. The first element of the tuples creates the first level of the
dataframe, and so on. Then in line 3 we create the index for the rows using a list of NumPy
arrays. The first array defines the first level of the index, and so on. In line 5 we create an array
for the data, making sure that the dimensions match the header and index that were created
before. Finally we build the dataframe in line 6, passing header and ind to the column and index
arguments.
To slice a multi-index dataframe you can use loc or iloc. With loc, you can specify the sub-
columns and the sub-rows using tuples:

1 df.loc[("M", "foo"),("A", "x")] 

4

Performing operations with dataframes

Something that often comes up when using dataframes are algebraic operation between columns,
for example multiplying two columns and storing the result in a new one. In the next code cell
we calculate the second moment of inertia of a rectangle, given the width b and he height h.
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b=np.array([1,1,1]) 
h=np.array([1,2,3]) 
df=pd.DataFrame({"b":b, "h":h}) 
  
df["I"]=(df.b*(df.h)**3)/12 
df 

b h I
0 1 1 0.083333

1 1 2 0.666667

2 1 3 2.250000

In lines 1 and 2 we create two arrays that contain the dimensions of the rectangles. Then in line 3
we build the dataframe from these two arrays, and finally in line 4 we compute the second
moment of inertia using the formula

The result is stored in a new column called I.
I suggest experimenting a bit with some random dataframes before moving on to the next
sections, trying the various functions explained above. Now we will learn how to import data
from external sources.



Working with external data

More often than not engineers must perform operations using data stored in .csv or .xlsx files.
Pandas has built-in functions to load these types of files and store them automatically in
dataframes, and also handle missing data.

loading a spreadsheet

For the next example you will need the column_example.xlsx file that you can find on the book's
support website at https://python4civil.weebly.com/pandas.html. Once you have downloaded the
file, put it in the same folder as the jupyter file you are using. If the file isn't in the same folder
pandas won't know where to find it and won't be able to load it. Once you have everything ready,
you can load the file in jupyter with the following code:
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df=pd.read_excel('column_example.xlsx', header=[0,1], index_col=0) 
df=df.round(4) 
df.head() 

Column
x M neg M pos V neg V pos N neg N pos

0 0.0000 0.0 0.0000 0.0 0.0000 0.0 0.0000

1 0.0000 0.0 2.9919 0.0 0.5679 0.0 806.8224

2 0.1675 0.0 2.9024 0.0 0.5679 0.0 806.8224

3 0.3350 0.0 2.8133 0.0 0.5678 0.0 806.8224

4 0.5025 0.0 2.7247 0.0 0.5677 0.0 806.8224

The file we are importing contains the bending moment, shear and axial force of a column part
of a concrete frame. If you take a look at the .xlsx file you will notice that the data has a header
that says column in the first line and x, M neg, M pos,T neg, T pos, N neg, N pos in the
second. The first column represents the position (height) considered.
To import the data we use the function read_excel, specifying the name of the file we want to
load. We also pass the header argument, specifying which lines will be used as headers for the
dataframe. We could have specified an index as well by passing the index_col argument, telling
pandas which column must be used as index. In line two we round the values so that they have
maximum four decimal digits, and finally using head() we display the first few lines of the
dataframe.

NOTE

When importing data in a dataframe, it's important to have at least a general idea of
how the data is structured. So take some time to examine the file you are loading
and if possible organize the data so that it's easy to manipulate. This will save a lot
of time down the line cleaning an ill-presented dataframe.

https://python4civil.weebly.com/pandas.html


The dataframe we created still needs some work. For example, we really don't need the first
level of the header that says "column". We also don't need the first line of data, since it's
composed of zeros. Plus, if we take a look at the last rows of the dataframe we see that there is a
line with missing data. To display the last rows use the tail() function:

1 df.tail() 

Column
x M neg M pos V neg V pos N neg N pos

21 3.350 0.0 1.3601 0.0 0.5140 0.0 806.8227

22 3.350 0.0 3.0870 0.0 0.6027 0.0 220.7086

23 5.025 0.0 2.1503 0.0 0.6027 0.0 220.7086

24 6.700 0.0 1.3178 0.0 0.6027 0.0 220.7086

25 6.700 NaN NaN NaN NaN NaN NaN

Making these modifications is really simple and only takes a few lines of code:
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df.columns=df.columns.droplevel(0) 
df=df.dropna() 
df=df.drop(0) 
df.head() 

x M neg M pos V neg V pos N neg N pos
1 0.0000 0.0 2.9919 0.0 0.5679 0.0 806.8224

2 0.1675 0.0 2.9024 0.0 0.5679 0.0 806.8224

3 0.3350 0.0 2.8133 0.0 0.5678 0.0 806.8224

4 0.5025 0.0 2.7247 0.0 0.5677 0.0 806.8224

5 0.6700 0.0 2.6365 0.0 0.5673 0.0 806.8224

In the first line we delete the first level of the header using droplevel, then in line 2 we use the
function dropna to delete every row that contains a NaN value, and finally we delete the first
line of the dataframe (the one that contains only zero values) with the drop function. At last our
dataframe is ready and can be used for further calculations.

Loading a csv file

Comma Separated Values (csv) files are another common format used to store data. You can
open a csv file with any text editor that you have installed in your computer. Download the file
beam_example.csv from https://python4civil.weebly.com/pandas.html, and place it in the same
folder as the jupyter notebook you are currently working on. The data in the file is similar to
what we have seen previously in column_example.xlsx. To load the file we use read_csv:

https://python4civil.weebly.com/pandas.html
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df=pd.read_csv('beam_example.csv', header=[1]) 
df=df.round(3) 
df=df.dropna() 
df=df.reset_index(drop=True) 
df=df.drop(0) 
df=df.reset_index(drop=True) 
df.head() 

x M neg M pos T neg T pos N neg N pos
0 0.000 -32.145 0.000 57.936 0.0 -0.073 0.073

1 0.069 -28.255 0.000 55.435 0.0 -0.073 0.073

2 0.137 -24.536 0.000 52.935 0.0 -0.070 0.070

3 0.206 -20.988 0.000 50.435 0.0 -0.067 0.067

4 0.275 -17.613 0.626 47.934 0.0 -0.064 0.064

Notice how we specify that we want to use the second line of the dataframe as header, then we
round all the number so that they have a maximum of three decimal places. In line 3 we call
dropna() to clean the data, and then we reset the index using reset_index. In line 5 we delete the
first line of data as well, and then we reset the index once again.

NOTE

The function read_csv offers a lot of parameters to import the data in the best
possible way. For example if you have a csv file that use a period instead of a
comma as the separator, you can pass the sep argument and specify a different
string. Please refer to the documentation for more in-depth information about this
command.

Exporting a dataframe

Saving a dataframe in a .csv or a.xlsx file is very easy, simply call to_excel() or to_csv():
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df.to_excel("output.xlsx") 
df.to_csv("output.csv") 

If you open up the folder where the jupyter notebook you are working on is stored, you will see
that python has created two new files called output.xlsx and output.csv.



EXAMPLE: load cases for a two span beam

The goal of this exercise is to apply to a practical situation what we have learned up until now
about NumPy, SymPy and Pandas. In the end we will have an useful piece of code that can be
adapted to a lot different situations.

Problem definition

We have a two-span continuous beam, and we want to consider the two different load
combinations shown in the next figure. We want to build a DataFrame that contains the shear
and the bending moment for both combinations, and also plot the results.

q1=4.5 kN/m q2=3.2 kN/m

A B C

l1=4 m l2=5 m
A B C

q1=3.2 kN/m q2=4.5 kN/m

COMBO 1

COMBO 2

The best approach to solve this problem is to write a function to wich we pass the beam's
dimensions and loads that returns the bending moment and shear. Since the beam is hyperstatic,
to find the reactions we can't simply solve the equilibrium equations. So we split the beam in
two and introduce an unknown bending moment Mx to mantain congruence, as shown in the
next figure:

q
1

q
2



On the left and right of B the rotation must be the same, so we can calculate Mx by solving

Once we know the value of Mx the next step is to calculate the reactions by solving two systems
of equations, one for each span:

Then we can calculate the bending moment and shear. For the first span:

For the second span:

Let's implement all of this in python. The function that calculates the internal forces is displayed
in the next code cell:
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import numpy as np
import sympy as sp
import pandas as pd 
  
def solve_beam(l1, l2, q1, q2): 
    l=l1+l2 #total length 
    Mx=sp.symbols('Mx') #create symbol Mx 
  
    #calculate Mx 
    Mx=sp.solveset(Mx*l1/3+q1*l1**3/24+Mx*l2/3+q2*l2**3/24,Mx).args[0] 
  
    #sove equilibrium equations 
    Va, Vb1, Vb2, Vc=sp.symbols('Va Vb1 Vb2 Vc') 
    Va, Vb1=sp.linsolve([Va+Vb1-q1*l1, Vb1*l1+Mx-(q1*l1**2)/2],  
          (Va, Vb1)).args[0] 
    Vc, Vb2=sp.linsolve([Vb2+Vc-q2*l2, Vb2*l2+Mx-(q2*l2**2)/2],  
          (Vc, Vb2)).args[0] 
    Vb=Vb1+Vb2 
  
    x1=np.arange(0,l1+0.1,0.1) #create axis x1 
    x2=np.arange(0, l2+0.1, 0.1) #create axis x2 
  
    beam1=pd.DataFrame({"x":x1}) #create a dataframe for the first span 
    beam2=pd.DataFrame({"x":x2}) #create a dataframe for the second span 
  
    beam1["M"]=Va*beam1.x-(q1*beam1.x**2)/2 # calculate M and store it  
    beam2["M"]=Mx-(q2*beam2.x**2)/2+Vb2*beam2.x # calculate M and store it  
  
    beam1["V"]=Va-q1*beam1.x # calculate V and store it  
    beam2["V"]=Vb2-q2*beam2.x # calculate V and store it  
  
    beam2.x=beam2.x+l1 # re-assign x for the second span 
  
    beam=pd.concat([beam1, beam2]) # concatenate the two dataframes 
  
    return(beam) # return the result

The code looks complicated, but in reality it's quite simple. Let's explain what each line does.

Line 1 to 3: we import the necessary libraries
Line 5: this is the function's definition. We create a function called solve_beam
that accepts l1, l2, q1, q2 as inputs.
Line 6: we calculate the total length of the beam.
Line 7: we create a symbol for the unknown moment M x .
Line 10: using solveset, we solve the congruence equation for Mx, and extract the
result using args[0]. We store the result in Mx, wich now is no longer a SymPy
symbol but a normal float variable.
Line 13: we create the symbols Va, Vb1, Vb2 and Vc
Lines 14 to 17: we call linsolve to solve the systems for the two spans. Like we did
with Mx, we store the results in the corresponding variables



Lines 20 and 21: we initialize the two numpy arrays that will define the x
coordinate for the two spans. We use the numpy function arange, that takes as
input a starting value, an ending value and a step. In this case we want to discretize
the two spans with a set of points with step equal to 0.1 m. The results looks like
this: x1=[0.1, 0.2, 0.3, ..., l1]
Line 23 and 24: We are treating the two spans separately, so we create two
separate dataframes. We store the two x coordinate that we have just created in
column x
Line 26 and 27: Using the formulas explained in the previous section we calculate
the bending moment for each span. Notice how we use the x of the dataframes to
create a new M column with the same length.
Line 29 and 30: We create calculate V for each dataframe and we store the result
in a new column.
Line 32: We have implemented all the formulas that we need. The next step would
be to concatenate the two dataframes we just created in order to obtain a single
dataframe for the whole beam. However, the x coordinate contained in beam2
starts from 0. This was useful for calculating the bending moment and shear, but
now we want it to start from l1 so that when we concatenate the two dataframes tha
column x goes from 0 to l. In order to do this, we simply add l1 to beam2.x.
Line 34: here we concatenate the two dataframes using concat
Line 36: finally, we specify that the function must return the dataframe beam.

Well, that wasn't that difficult: we simply implemented the formulas that we had stated
previously. In the next code cell we use the function that we have just created to solve the beam
for the two load cases.
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header=pd.MultiIndex.from_tuples([("combo 1", "M"), ("combo 1", "V"), 
                                 ("combo 2", "M"), ("combo 2", "V")]) 
combos=pd.DataFrame(columns=header) 
combos["x"]=solve_beam(4, 5, 3.2, 4.5)["x"] 
  
combos["combo 1"]=solve_beam(4, 5, 3.2, 4.5) 
combos["combo 2"]=solve_beam(4, 5, 4.5, 3.2) 
combos=combos.set_index("x") 
  
combos=combos.astype("float") 
combos.head() 

combo 1 combo 2
M V M V

x
0.0 0.000000 3.735764 0.000000 6.611111

0.1 0.357576 3.415764 0.638611 6.161111

0.2 0.683153 3.095764 1.232222 5.711111

0.3 0.976729 2.775764 1.780833 5.261111

0.4 1.238306 2.455764 2.284444 4.811111



let's go through each line like we did previously:

Line 1: here we create the header for the dataframe containing the load
combinations.
Line 3: we build an empty dataframe called combos using the header just created.
Line 4: In the dataframe we just created, we create a new column that contains the
x coordinate of the beam. the most simple way to do this is to just call solve_beam
and extract the x column using ["x"].
Line 6 and 7: here we fill the columns of combos by calling solve_beam twice
and passing the loads for each combination.
Line 8: instead of having the default index, we want the dataframe to be indexed
using x, so we call set_index to tell pandas wich column we want to use as index.
Line 10: This line is a bit problematic. You might think that the values stored in
combos are floats, but actually they are some different kind of datatype that pandas
uses. You can print the datatype of combos using print(combos.dtypes). This
will display the datatype of each column, and they will all say object. If we keep
the dataframe like this, the plotting functions that we will use later wont' work. To
fix this we call the function astype and specify "float". This will convert all the
number in the dataframe to float.
Line 11: displays the first rows of the dataframe.

Plotting the results

The library matplotlib (used for plotting) will be explained in the next chapter. For now just copy
the following code in an empty cell and run it:
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import matplotlib.pyplot as plt 
  
fig = plt.figure(figsize=(8,8)) 
ax = plt.subplot(211) 
ax.invert_yaxis() 
  
combos.loc[:,pd.IndexSlice[:,"M"]].plot(ax=ax) 
  
ax = plt.subplot(212) 
ax.invert_yaxis() 
combos.loc[:,pd.IndexSlice[:,"V"]].plot(ax=ax) 
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Matplotlib

In this chapter you will learn how to visualize various kinds of data using the functionalities
offered by Matplotlib. Those who have used MatLab at some point in their lives will find this
library somewhat familiar. Indeed Matplotlib was written to mimic the behaviour of Matlab, at
least to some extent. In the vast landscape of python libraries matplotlib as become virtually the
only library that people use to plot data. Like all the libraries we have seen so far matplotlib is
in a sense the "industry standard" to do this kind of task.
In this chapter you will find many code examples that showcase some of the functionalities of
matplotlib. The main goal is to give you the tools necessary so that you know what to do in
order to obtain a certain type of plot. In the end, however, everything comes down to personal
taste. In fact I believe that tinkering and experimenting is the best way to learn how matplotlib
works.



Loading the library and importing the data

Before we start exploring matplotlib we must first load the library and import some data to plot.
Let's start with the usual preamble:

1 
2 
3

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In this chapter we will need NumPy, pandas and of course matplotlib. The module of
matplotlib used for plotting is called pyplot. Here we load it with the nickname plt.
Now let's import the data. For the examples to come we will use the data stored in a file called
"beam.csv". You can download such file from https://python4civil.weebly.com/matplotlib.html.
Remember to store it in the same folder as the jupyter notebook you are currently working on,
otherwise pandas won't know where to find it!
This data is the final product of the example at the end of the chapter about pandas, where we
calculated the internal forces of a two span beam. Here the results are stored in a .csv file with
five columns:

x: the x axis of the beam, that will also become the x axis of our plots
M1: the bending moment of the first load combination
V1: the shear of the first load combination
M2: the bending moment of the second load combination
V2: the shear of the second load combination

In the next code cell the data is loaded in a pandas DataFrame, and then the various columns are
stored in separate NumPy arrays.
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data=pd.read_csv("beam.csv") 
x=np.array(data.x) 
M1=np.array(data.M1) 
M2=np.array(data.M2) 
V1=np.array(data.V1) 
V2=np.array(data.V2) 

Now that everything has been loaded we can move on to matplotlib.

https://python4civil.weebly.com/matplotlib.html


How Matplotlib works

The library is pretty straight forward. The main function used for plotting is
matplotlib.pyplot.plot(), to wich you can pass the data you wish to plot. For example:

1 
2

plt.plot(x,M1) 
plt.show() 

There is obviously a lot of room for improvement. In line 1 we tell matplotlib that we want to
plot M1 using x as the horizontal axis, and in line 2 the plot is displayed using plt.show()
(remember that we assigned the nickname plt to matplotlib.pyplot). Before we go any
further, however, it is best to discuss what are the main components of matplotlib.
The graph you see above is composed of two things: a figure and an axes. The figure is
basically the overall frame of the image, and the axes is the actual plot with the ticks, the lines,
and so on. "axes" is an instance of matplotlib, so that is why it is referred to as a singular noun.
In a single figure you can have multiple axes instances, meaning that you can display more than
one plot per figure.
The example above can be replicated using a slightly different syntax:
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fig, ax=plt.subplots() 
ax.plot(x, M1) 
plt.show() 



This is a more object-oriented approach. Instead of calling plot() directly from
matplotlib.pyplot, we use the subplots command to create a figure and an axes, unpacking
them in the two variables fig and ax. Now we have a figure called fig with one single axes
instance in it called ax. To plot the graph, instead of using plt like we did previously, we can use
ax. At the end we still call plt.show() to display the plot.
It is important to know how both approaches work, so that you can understand all the examples
you might find online. Now we will add some additional elements to the plot and compare the
two methods.
Using plt, we can write the following piece of code:
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plt.plot(x,M1, label="M1") 
plt.xlabel("x") 
plt.ylabel("bending moment") 
plt.title("Beam") 
plt.legend() 
plt.gca().invert_yaxis() 
plt.gcf().set_size_inches(6,3) 
plt.show() 



Let's go through the code line by line:

Line 1: Here we invoke plot to plot M1 using x as the horizontal axis. We also
pass the label argument, that specifies the name that will appear in the legend.
Line 2: By using plt.xlabel we specify the text that will appear below the
horizontal axis
Line 3: This specifies the label for the vertical axis instead
Line 4: here we specify the title of the plot
Line 5: We tell matplotlib that we want to display the legend. Because while
calling plot we have passed a label argument, matplotlib will build the legend
automatically.
Line 6: You might have noticed that the bending moment in the output of code
was upside-down. This is because the bending moment is usually displayed with
positive values below the beam, wich means that to display it correctly we must
invert the y axis. In order to do this we must tell the axes instance to invert it
using .invert_yaxis(). To get the current axes instance matplotlib offers the
gca() function, wich stands for get current axes.
Line 7: This line sets the figure size to 6x3 inches. The size is controlled by the
figure instance, so we have to use gcf() (wich stands for get current figure) and
then use the set_size_inches function.
Line 8: Calling plt.show() will display the plot.

Now let's plot the same graph using the object-oriented approach:
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fig, ax=plt.subplots() 
ax.plot(x,M1, label="M1") 
ax.set_xlabel("x") 
ax.set_ylabel("bending moment") 
ax.set_title("Beam") 
ax.legend() 
ax.invert_yaxis() 
fig.set_size_inches(6,3) 
plt.show() 

Line 1: Using the subplots function we create a figure instance and an axes
instance, that get stored in fig and ax. If you don't specify any arguments inside
the parentheses matplotlib will create one single figure with one axes instance
inside of it. The variables fig and ax are assigned by unpacking the output of
plt.subplots(). If you run print(plt.subplots()) in an empty cell you will
see that the function returns a tuple with the figure instance in the first position
and the axes instance in the second position.
Line 2: Here, instead of using plt to plot M1, we can use the axes instance we
have just created.
Line 2 and 3: Using ax we can set the label for the two axes by calling set_xlabel
and set_ylabel. Notice that the syntax is slightly different from the previous
example: here xlabel has been replaced by set_xlabel and ylabel has been
replaced by set_xlabel.
Line 4: To set the title we use set_title. You might see a pattern here: when using
ax the commands usually start with set_.
Line 6: we tell ax to display the legend
Line 7: Because we have saved the axes instance inside ax, we don't need to use
gca()

Line 8: The same applies for the figure: we already saved the instance of the
figure inside fig, so There is no need to use gcf()



Hopefully now you have an idea of how the two different approaches work. Generally, it is best
to avoid using the first method unless you want to plot really simple things. Especially when it
is required to plot more than one graph, using subplots becomes mandatory. Plus, the code
written with the second method is much more readable.



Modifying the appearance of a plot

Matplotlib allows the user to edit almost every single aspect of a plot, and the possibilities are
endless. Luckily to obtain a great looking figure you really don't need too much work. In order
to keep the code in the following examples short, the lines for setting up the legend, the title etc.
have been omitted.

Changing colors and line styles

In the next piece of code we change the appearance of the line:
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fig, ax=plt.subplots(figsize=(8,3)) 
ax.invert_yaxis() 
ax.plot(x,M1, label="M1", color="deeppink", linestyle="--", linewidth=3) 
plt.show() 

In line 3 we pass plot three additional arguments: color, linestyle and linewidth. The line now
has a different color, a different width and is also dashed. The value passed to color is a string
that picks one of the so called "named colors" of matplotlib. You will find a list of all these
colors at the end of this chapter. The value passed to linestyle is also a string, and again at the
end of this chapter you will find all the references you need. linewidth accepts a number, and
by default is set to 1. Notice how the size of the figure can be set directly when calling
plt.subplots(), thus saving one line of code.

Plotting more than one line

Multiple datasets can be plotted in the same graph simply by calling plot more than once:
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fig, ax=plt.subplots() 
ax.invert_yaxis() 
ax.plot(x,M1, label="M1", linewidth=3) 
ax.plot(x,M2, label="M2", linewidth=3) 
plt.show() 



Plotting styles

Matplotlib has buit-in styles that make plotting a professional looking graph really easy. You
can set the style by calling plt.style.use() before creating the figure:
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plt.style.use("seaborn") 
fig, ax=plt.subplots(figsize=(8,3)) 
ax.invert_yaxis() 
ax.plot(x,M1, label="M1", linewidth=3) 
ax.plot(x,M2, label="M2", linewidth=3) 
plt.show() 

At the end of this chapter you will find a chart containing all the available styles.

Filling areas

With fill_between you can fill the area between two curves:
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plt.style.use("seaborn-whitegrid") 
fig, ax=plt.subplots(figsize=(8,3)) 
ax.invert_yaxis() 
ax.plot(x,M1, label="M1", linewidth=3) 
ax.plot(x,M2, label="M2", linewidth=3) 
ax.fill_between(x, M1, alpha=0.3) 
ax.fill_between(x, M2, alpha=0.3) 
plt.show() 

fill_between needs at least the x coordinates of the points and their y value, so we pass x and
M1. The transparency of the fill can be adjusted with the parameter alpha. alpha=0 means
completely transparent, alpha=1 means completely opaque. By specifying another set of y
values you can fill the area between two curves:
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plt.style.use("seaborn-whitegrid") 
fig, ax=plt.subplots(figsize=(8,3)) 
ax.invert_yaxis() 
ax.plot(x,M1, label="M1", linewidth=3) 
ax.plot(x,M2, label="M2", linewidth=3) 
ax.fill_between(x, M1, alpha=0.3) 
ax.fill_between(x, M2, alpha=0.3) 
plt.show() 

Finally, with the parameter where you can tell matplotlib to fill only the portions of the plot that
fulfill a certain condition:
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fig, ax=plt.subplots(figsize=(8,3)) 
ax.invert_yaxis() 
ax.plot(x,M1, label="M1", linewidth=3) 
ax.fill_between(x, 0, M1, alpha=0.3, where=(M1<=0)) 
ax.fill_between(x, 0, M1, alpha=0.3, where=(M1>=0)) 

Adding markers

A marker is a symbol that matplotlib displays in correspondence of each data point. Markers are
also what constitute scatter plots, as we will see later. When passing the marker argument to
plot(), each datapoint is visualized with a symbol. We can use this to our advantage to display
the supports of the beam we are printing:
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fig, ax=plt.subplots(figsize=(8,3)) 
ax.invert_yaxis() 
ax.plot(x,M1, label="M1") 
ax.plot(x,M2, label="M2") 
ax.fill_between(x, 0, M1, alpha=0.3) 
ax.fill_between(x, 0, M2, alpha=0.3) 
ax.plot([0,4,9],[0,0,0], linewidth=2, color="dimgrey",  
        marker=6, markersize=16) 
plt.show() 

There are a lot of types of markers, please refer to the chart at the end of this chapter to pick the
one most suited for you.



Plotting multiple plots

Up until now we have used matplotlib to display only one graph at a time, leaving the
parentheses of plt.subplots() empty. Before doing anything it is better to understand how
matplotlib organizes the various subplots inside a figure. Remember that a "plot" is just an axes
instance. If you have more than one, matplotlib is going to organize them inside the figure in a
grid-like manner. This is why in order to specify how many plots you want you have to pass
subplots the number of rows and the number of columns of the grid. If there are two rows and
two columns, the figure will have a total of four subplots.
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fig, (ax1, ax2)=plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(8, 6)) 
ax1.plot(x,M1, label="M1") 
ax1.set_ylabel("bending moment") 
ax1.set_title("Combo 1") 
ax1.invert_yaxis() 
  
ax2.plot(x,M2, label="M2") 
ax2.set_ylabel("bending moment") 
ax2.set_title("Combo 2") 
ax2.invert_yaxis() 
plt.show() 

In line 1 we pass subplots() the two arguments nrows and ncols, that define the number of
rows and columns in the figure. We also set sharex to True, meaning that the two plots will
share the same x axis. Because there are two plots in the figure, there are also two separate axes
instances. If you print the output of plt.subplots using print() you will see that it is
structured in this way: (figure, (axes 1, axes 2)). When unpacking the output you have to
mirror this structure in the variables before the = sign. We now have one figure called fig and
two axes called ax1 and ax2. The rest of the code is nothing new, except we can now choose in
wich plot we want to display the data using ax1 and ax2.
A figure with four plots works this way instead:
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fig, ((ax1, ax2),(ax3,ax4))=plt.subplots(nrows=2, ncols=2, sharex=True) 
fig.set_size_inches(8, 4) 
ax1.plot(x,M1, label="M1") 
ax1.set_ylabel("bending moment") 
ax1.set_title("Combo 1") 
ax1.invert_yaxis() 
  
ax2.plot(x,V1, label="V1") 
ax2.set_title("Combo 1") 
  
ax3.plot(x,M2, label="M2") 
ax3.set_ylabel("bending moment") 
ax3.set_title("Combo 2") 
ax3.invert_yaxis() 
  
ax4.plot(x,V2, label="V2") 
ax4.set_title("Combo 2") 
plt.show() 

Notice that the structure of the output of plt.subplots() has changed: now the axes instances
are organized inside a 2x2 tuple.



Modifying the tick marks

Sometimes the default numbering that matplotlib uses for the axes does not represent the data
very well. To set your own ticks you can use set_xticks and set_yticks. In the following
example we tell matplotlib to display the x position every meter:
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fig, ax=plt.subplots(figsize=(8,3)) 
ax.invert_yaxis() 
ax.plot(x,M1, label="M1") 
ax.set_xticks(np.arange(0,10,1)) 
plt.show() 

we simply pass ax.set_xticks() an array of number ranging from 0 to 9 using
np.arange(0,9,1).



Scatter plots

Another very popular style of plots are scatter plots. They are mostly used to show correlation
between data and have a wide range of applications. We will use a new dataset called
raindata.csv, that stores informations about precipitations in Italy. The first column contains the
name of all the italian provinces, the second the average temperature, the third the average daily
precipitations in mm, and the fourth the total number of days in which precipitations exceeded
10 mm in the period from 2007 to 2017. In the next code cell we store all this data in NumPy
arrays:
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raindata=pd.read_csv("raindata.csv") 
province=np.array(raindata["province"]) 
T=np.array(raindata["T"]) 
daily=np.array(raindata["daily prec."]) 
ndays=np.array(raindata["days exceeding 10 mm 2007-2016"]) 

The function of matplotlib that deals with scatter plot is called scatter. In the next code cell we
use it to see if there is a correlation between the average daily precipitations and the number of
days in which the precipitations exceeded 10 mm.
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plt.style.use("seaborn-whitegrid") 
fig, ax=plt.subplots() 
ax.scatter(daily,ndays, c=T, cmap="Blues", marker="p") 
ax.set_xlabel("daily prec.") 
ax.set_ylabel("days exceeding 10 mm") 
plt.show() 



We create a figure and an axes with the usual preamble, then we call ax.scatter(). The
arguments you can pass to ax.scatter() are slightly different from those of ax.plot(). We
can actually color-code the points by passing an array of values to the argument c: in this case
we want the points to display a different color based on the average daily temperature, so we
pass T. The cmap argument defines which color map will be used to display the color, in this
case we choose "Blues". At the end of this chapter you will find a chart that lists all the
available color maps. We also change the marker used to display the data to a pentagon, by
passing "p" to the marker argument.
To further embelish the graph we can add a color bar:
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fig, ax=plt.subplots() 
im=ax.scatter(daily,ndays, c=T, cmap="Blues", marker="p") 
ax.set_xlabel("daily prec.") 
ax.set_ylabel("days exceeding 10 mm") 
cbar=fig.colorbar(im, ax=ax) 
cbar.set_label("avg. temperature") 
plt.show() 

This time when we invoke scatter in line 2 we store the output in a variable called im. The
output of ax.scatter() is what matplotlib calls a PathCollection. We need this PathCollection
because it is the first argument that we have to pass to the function fig.colorbar() in line 5.
Optionally, you can specify the axes instance where you want the colorbar to be displayed by
using the ax parameter. In our case this doesn't affect the appearance of the plot, since there is
only one axes. fig.colorbar() creates a colorbar instance that we store inside a variable called
cbar, which is later used to set the label for the colorbar.



Sometimes to better visualize the data you might need to use a logarithmic scale for the axes.
This is done with plt.xscale("log") or ax.set_xscale("log"):
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plt.scatter(daily,ndays, c=T, cmap="Blues", marker="p") 
plt.xscale("log") 
cbar=plt.colorbar() 
plt.show() 

Here instead of initializing ax and fig we use plt directly.



Bar plots

In many situations another meaningful way to represent data is using bar plots. For this
purpose matplotlib offers the bar function. Using the same precipitation data already imported
for scatter plots, we can display the average temperature for the first fifteen provinces:
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fig, ax = plt.subplots() 
ax.bar(province[:15], daily[:15]) 
plt.draw() 
ax.set_xticklabels(ax.get_xticklabels(), rotation=45) 
ax.set_ylabel("Avg. temperature") 
plt.show() 

In line 2 we create a bar plot using the bar() function passing province to specify the labels for
the x axis and T to specify the values for the y axis. We have not specified a position for the
columns, so Matplotlib will arrange them automatically. In line 3 we use draw() to draw the
plot. draw() doesn't actually display the graph (for that there is show()), but it initializes all the
elements inside the plot. We need to do this because in line 4 we use ax.get_xticklabels(),
which returns a list of strings containing the labels of the ticks for the x axis. If we had not
called plt.draw() in the line before, we would have obtained an empty list. By passing said list
to ax.set_xticklabels() and passing 45 to rotation we are able to rotate the labels by 45ĄÁ.

NOTE

Instead of calling plt.draw() and then using ax.get_xticklabels(), we could
have simply passed province to ax.set_xticklabels().



To plot more than one array of data and group the columns by province we have to tell
matplotlib the position and width of each column:
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barWidth=0.3 
r1=np.arange(len(province[:15])) 
r2=r1+barWidth 
  
fig, ax = plt.subplots() 
ax.bar(r1, daily[:15], width=barWidth, label="daily avg.") 
ax.bar(r2, ndays[:15], width=barWidth, label="days > 10mm") 
ax.set_xticks(r1) 
ax.set_xticklabels(province[:15], rotation=45) 
ax.set_ylabel("Avg. temperature") 
ax.legend() 
plt.show() 

The variable barWidth stores the width of the bars. in line 2 and 3 we create two arrays that
store the position of each bar that we wish to plot. Notice how the values of r2 have an offset
from the values in r1 equal to barWidth. In lines 5 and 6 we create the bar plots, specifying a
custom position for the bars by passing r1 and r2 as first arguments. The width parameter is
used to control the width of the bars, so we pass barWidth to it. The next thing to do is to set
up the x axis so that it gets displayed properly. Using set_xticks() we define the position of
the ticks and with set_xticklabels() we tell matplotib to use the strings stored in province as
labels and to rotate them by 45ĄÁ.



APPENDIX: parameter references

Named colors
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Plot Styles















Color maps







Calculating section properties

We finally have all the tools necessary to start solving real-world problems .
The libraries introduced previously will play a vital role in every example of
this second part of the book, so please refer to the first if you forget some of
the commands that you might encounter.



Section properties of a steel beam

In this example we will consider a welded I beam with asymmetric flanges.
The properties that will be calculated are:

Area A
Section centroid yG
first moment of area about the x axis Sx
first moment of area about the y axis Sy
second moment of area about the x axis Ix
second moment of area about the y axis Iy
elastic section modulus about the x axis Wx
elastic section modulus about the y axis Wy
elastic moment of resistance about the x axis MRd,x

The quantities that define the geometry of the section are displayed in the
next figure:



In this example we will consider the following values:

Name Value Unit

b 250 mm

B 300 mm

h 400 mm

tf1 18 mm

tf2 15 mm



tw 12 mm

Let's open up a new jupyter notebook. In the first cell we will import all the
libraries that we will need:
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import numpy as np
import sympy as sp
import pandas as pd 
  
sp.init_printing(use_latex="mathjax") 

In order to display the results in latex format, we call init_printing from
SymPy. Once the libraris are loaded, the first thing to do is to store the
dimensions of the section into variables:
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b=250 #mm 
B=300 #mm 
h=400 #mm 
tf1=18 #mm 
tf2=15 #mm 
tw=12 #mm 
  
hw=h-tf1-tf2 

It is good practice to write the unit of measurement as a comment next to
every variable. This might seem superfluous in a simple example like this,
however when the notebook starts to become more crowded it will be
essential in order to avoid mistakes. The section is divided in three parts: the
top flange, the bottom flange and the web. We now store the area of each
part in three different variables, and calculate the total area of the section:
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Af1=b*tf1 
Af2=B*tf2 
Aw=hw*tw 
A=Af1+Af2+Aw 
A 

Next we calculate yG, which is the distance of the centroid from the top of
the beam. We know that the first moment of area of the portion of the beam



above yG must be equal to the one of the portion below, meaning that

NOTE

The first moment of area for a rectangle is given by the area of the
rectangle multiplied by the distance of its centroid from the axis
taken in consideration. In this case we must calculate the first
moment of area relative to yG, which at the moment is still an
unknown quantity.

The equation above must be solved with respect to yG, so in order to do this
we will have to use SymPy. It is important to note that we are assuming the
position of the centroid to be somewhere inside the web of the beam. If this
wasn't the case, we would need to change the equations accordingly.
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yG=sp.symbols('yG') 
Stot=b*tf1*(yG-tf1/2)-B*tf2*(h-yG-tf2/2)\ 
            +tw*(yG-tf1)**2/2-tw*(h-yG-tf2)**2/2 
yG=sp.solveset(Stot, yG).args[0] 
yG 

In line 1 we define a SymPy symbol called yG, and in line 2 we write the
formula of the first moment of area. Every quantity that appears in this
formula is known, except yG. The result is a SymPy expression that we store
in Stot. In line 4 using sp.solveset() we solve the equation. Remember
that SymPy automatically adds =0 when using solveset. Using args[0] we
access the first (and only) element stored inside the output of solveset, and
we assign it to yG.
Now we can use yG to calculate the first moment of area about the x axis, by
considering only the top half of the section.



1 
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Sx=b*tf1*(yG-tf1/2)+tw*(yG-tf1)*(yG-tf1)/2 
Sx 

The section is symmetric in the horizontal direction, therefore the centroid
yG is located in the middle of the web. We can calculate the first moment of
area about the y axis by considering the left or right half of the section:
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Sy=tf1*(b/2)*(b/4)+tf2*(B/2)*(B/4)+hw*(tw/2)*(tw/4) 
Sy 

Next, we calculate the second moment of area about the x and y axes. Like
before we consider the section as a collection of rectangles. Each rectangle
contributes to the total second moment of area of the section according to the
following formula:

Where bi, hi and Ai are the width, height and area of the rectangle, and di is
the distance between the centroid of the rectangle and the axis we are
considering. To implement this formula in the code we calculate I separately
for the two flanges and the web, and then we sum the results.
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Ix_f1=(b*tf1**3)/12+Af1*(yG-tf1/2)**2 
Ix_f2=(B*tf2**3)/12+Af2*(h-yG-tf2/2)**2 
Ix_w=(tw*hw**3)/12+Aw*(tf1+hw/2-yG)**2 
Ix=Ix_f1+Ix_f2+Ix_w 
Ix 

The same thing can be done to calculate the second moment of area about
the y axis:
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Iy_f1=(tf1*b**3)/12 
Iy_f2=(tf2*B**3)/12 
Iy_w=(hw*tw**3)/12 
Iy=Iy_f1+Iy_f2+Iy_w 
Iy 

Now we can calculate the elastic modulus, defined as

where I is the second moment of area and z is the distance between the
outer-most fibre of the section and the centroid. So if we consider the x axis:
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Wx=min(Ix/(yG), Ix/(h-yG)) 
Wx 

Notice how since we don't know if the outer-most fibre is in the top or the
bottom flange, so we write the formulas for both scenarios and then store
into Wx only the lowest value.
The last quantity that we are going to calculate is the moment of resistance,
calculated as

where fy is the yeld strength of the steel. For this easy introductionary
example we will omit all the safety coefficients and use the bare formula
found in solid mechanics theory. In the following chapters you will find
more in-depth examples. Considering S235 as the steel grade we can apply
the formula above:
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fy=235 #N/mm^2 
Mx=Wx*fy*10E-3 #kNm 
Mx 



The next table summarizes all the quantities found so far:

Name Value Unit

A 13404 mm2

yG 200.99 mm

Sx 1064910.02 mm3

Sy 315981 mm3

Ix 380550963.82 mm4

Iy 57240348 mm4

Wx 1893322.10 mm3

Mx 4449306.95 kNm



Conclusions

If you have followed the steps above you now have a functioning jupyter
notebook capable of calculating the cross-section properties of a welded
steel beam. All we had to do was to implement some formulas, so the code
was not that complex. Nevertheless, it still gives a comprehensive insight on
how to use python to translate theory into practice. In the next chapter you
will tackle a much more difficult problem, designed to make you understand
how to use functions in order to organize the different parts of your code.



M-N interaction in a concrete section



Ultimate Limit States (ULS)

In this chapter we will calculate the bending-axial force limit domain for a rectangular concrete
beam. The methodology will follow the Ultimate Limit States (ULS) design filosofy, so the goal
is to obtain the bending moment resistance and the axial load resistence of any given section. The
ULS criterion is summarized with the following expression:

where Sd represents a general design load and Rd the resistance of the structure. The final result
will be a graph where the horizontal axis is the axial force, and the vertical axis is the moment of
resistance of the cross-section. It looks something like this:

We will make the following assumptions:

The sections remain planar as the beam deflects. This is equal to ignoring the
deflection due to the shear force.
The rebars remain perfectly adherent to the concrete, meaning that steel has the
same strain as the concrete.
The contribute of the concrete under tension to the overall resistance of the section
will be ignored.
Tensile forces and strains are considered to be positive
Compressive forces and strains are considered to be negative
Bending moments are considered to be positive when they stretch the bottom half of
the section



Materials and geometry

Throughout this chapter we will consider a concrete section with the following dimensions:

The measures are in mm. The concrete is a standard C25/30 (fck=25 MPa and fck,cube=30 MPa)
and the rebar steel is a standard B450C with yeld strength fyk=450 MPa. Next we define the full
stress-strain relationship for both materials.

Concrete



The design stress-strain relationship for the concrete has an initial parabolic increment and a
subsequent horizontal branch once the yeld stress is reached, as shown in the next figure:

The relationship is defined as follows:

Remember that we have assumed compressive strain and stresses to be negative. The maximum
strain is assumed to be Ůcu=-0.0035, and the yeld strain is assumed to be Ůcc=-0.002. The design
yeld strength of the concrete is

Rebar steel

The design stress-strain diagram for the reinforcement bars is shown in the next figure:



The branches of the diagram are defined as follows:

Notice how in the negative part of the diagram (compressive stresses) the maximum strain is Ůcu
and not Ůsu. The design young modulus is assumed to be Es=200 GPa, and the maximum possible
strain is limited at Ůsu=0.01. The strain at failure is actually higher, but using the real value would
allow for excessive deflections. The design yeld stress is equal to

and the design yeld strain is



Strain domains

Because the concrete can't bear tensile stresses, we are facing a non linear problem. The portion
of concrete that contributes to the resistance of the section depends on the depth of the neutral
axis. This means that the resistance varies as the strain profile of the section changes. To plot the
resistance domain we must therefore consider all the possible strain profiles that bring the section
to failure, in accordance to the ULS design filosofy. For each profile there is an associated M-N
couple that we can use to plot the resistance domain of the section.
We can define five different domains for the strain profile, as seen in the next figure:

Domain Ⅰ: The section is completely under tension, and the neutral axis is above
it. The strain of the rebars at the bottom of the section is equal to $epsilon;su.
Domain Ⅱ: The neutral axis is now inside the section and goes from A to B. In B
the concrete reaches its maximum strain of -0.0035.
Domain Ⅲ: The neutral axis now goes from B to D, where the bottom rebars reach
their yeld strain.
Domain Ⅳ: The neutral axis reaches the bottom of the section, which is now
completely under compression.
Domain Ⅴ: The neutral axis continues to lower below the section, and the strain
profile rotates around F.

The strain diagram for each domain is described by a different set of equations, so they will be
implemented in the code separately.



Python code

We will now begin to write the code necessary to implement the theory explained above. It is
good practice to think about how you will structure your code before you start writing it, which
involves a lot of standard pen and paper to write down your ideas. The final goal is to plot the
limit resistance diagram of the section, which looks something like this:

where the five different colors represent the five domains. Each point of the curve above
represents a combination of axial force N and bending moment M that bring the section to failure.
The steps to find this pair of values are as follows:

Suppose a position of the neutral axis.
In accordance to the domains listed above, find the strain distribution in the section.
Because the section always remains flat, this distribution will be linear. Therefore,
Knowing the position of the neutral axis and the strain in one point of the section is
enough to find the distribution on the whole section.
Using the stress-strain diagrams of the materials, find the stress distribution along
the section.
Integrate the stress distribution to find the axial force capacity NRd and the moment
capacity MRd

Repeating these steps for all the possible positions of the neutral axis will result in the continuous
curve seen in the previous figure. Having understood our problem, the next step is to code a
solution. Here is how we will structure our code:



Store the known quantities (such as dimensions, material properties, etc.) into
variables.
Write two functions (one for steel and one for concrete) that take an array of strain
values as inputs. The output will be a corresponding array of stress values according
to the stress-strain relations described previously.
For each domain, consider the starting and ending positions of the neutral axis.
Discretize this range of values with a fixed number of points, and store them in an
array.
For every discretized position of the neutral axis calculate the strain in the rebars
and the concrete, and then use the functions defined previously to calculate the
corresponding stresses.
Integrate the stresses, find a pair of M-N values and store them in an array.

The first thing to do is to load all the necessary libraries. Create a new jupyter notebook, and
import NumPy and matplotlib:

1 
2

import numpy as np
import matplotlib.pyplot as plt

Now we will input the section dimensions and the material properties. To keep the code more tidy
we will use to separate cells. First, the section dimensions:
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a=400 #mm, section height 
b=300 #mm, section width 
c=50 #mm, concrete cover 
d=a-c 
As1=1017 #mm^2, 4phi18, bottom rebar area 
As2=452 #mm^2, 4phi12, top rebar area

Then the materials:
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#concrete 
fck=25 #MPa 
gamma_c=1.5 
fcd=0.85*fck/gamma_c #MPa 
eps_cc=-0.0020 
eps_cu=-0.0035 
  
#steel 
fyk=450 #MPa 
gamma_s=1.15 
fyd=fyk/gamma_s #MPa 
Es=200000 #MPa 
eps_su=0.01 
eps_y=fyd/Es 

Concrete stress-strain diagram



We need a function that takes as input an array of strain values and outputs an array of stress
values. As stated before, The relationship is described by the following equations:

The implementation goes as follows:
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def rel_c(eps): 
    n=len(eps) 
    sig=np.zeros(n) 
    for i in range(n): 
        if eps[i]>=0: 
            sig[i]=0 
        elif 0>eps[i] and eps[i]>=eps_cc: 
            sig[i]=-fcd*(2-eps[i]/eps_cc)*eps[i]/eps_cc 
        elif eps_cc>eps[i] and eps[i]>=eps_cu: 
            sig[i]=-fcd 
        else: 
            print('invalid eps value') 
    return(sig) 

In line 1 we create a new function called rel_c. The array of strain values that acts as input is
called eps (short for "epsilon"). We use a for loop to cycle through each value of eps,
implementing the equations using an IF statement. At each iteration we store the the result in an
array called sig (short for "sigma"), which is the output of the function. If eps[i] is outside the
bounds defined by the equations the function prints a warning. Should this happen, it means that
there is something wrong with the strain values we are passing to the function.

Steel stress-strain diagram

The structure of the code is identical to what we have done for the concrete, except the equations
to implement now are:

and the function is called rel_s instead of rel_c. The code goes as follows:
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def rel_s(eps): 
    n=len(eps) 
    sig=np.zeros(n) 
    for i in range(n): 
        if -eps_su<=eps[i] and eps[i]<=-eps_y: 
            sig[i]=-fyd 
        elif -eps_y<eps[i] and eps[i]<=eps_y: 
            sig[i]=eps[i]*Es 
        elif eps_y<eps[i] and eps[i]<=eps_su: 
            sig[i]=fyd 
        else: 
            print('invalid eps value') 
    return(sig) 

Domain Ⅰ

We must decide a coordinate system for the position of the neutral axis. The origin will
correspond to the top of the section, and the axis will be directed downward. For the first domain,
then, the neutral axis will go from Ð to 0. A general strain distribution is shown in the next figure:

Because there is only positive strain (meaning that the whole section is under tension), the
contribute of the concrete must be completely neglected. To calculate the M-N pair we must first
find the strain of the top and bottom reinforcement bars. We know the position of the neutral axis
yn, and we know that the strain for the bottom rebars is equal to Ůsu. Thus, the curvature of the
strain diagram is equal to

where d-yn is the total distance between the neutral axis and the bottom rebars. Remember that yn
is negative, that is why there is a minus sign in front of it. The strain of the top reinforcement bars
is equal to



The strain in the rebars generates a stress that multiplied by the area gives us the two forces Ts1
and Ts2. The M-N pair can then be defined as follows:

NRd is applied to the centroid of the section, which is assumed to be in the middle of it. Since the
reinforcement bars are not symmetrical the centroid is actually in a slightly different position,
however tests show that the error caused by this assumption is negligible.
Let's implement all of the above equations:
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n_step=20 
  
yn_sup=-9999 
yn_inf=0 
yn=np.linspace(yn_sup, yn_inf, n_step) 
psi=eps_su/(d-yn) 
eps_s1=np.full(n_step, eps_su) 
eps_s2=-psi*(yn-c) 
sig_s1=rel_s(eps_s1) 
sig_s2=rel_s(eps_s2) 
  
Nrd_1=As1*sig_s1+As2*sig_s2 
Mrd_1=As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c) 

In line 1 we initialize a variable called n_step that defines the number of discretization points
used to find the positions of the neutral axis. yn_sup and yn_inf store its starting and ending
positions. For yn_sup we specify -9999, which is just a random high enough number that will
serve in place of Ð. In line 5, using np.linspace() we create an array of evenly spaced values
that go from yn_sup to yn_inf called yn. From line 6 to 8 we implement the equations that
describe the strain distribution, and then we call rel_s twice to get the stresses for the top and
bottom bars. Finally, in lines 12 and 13 we calculate and store all the M-N pairs in Nrd_1 and
Mrd_1. We now have two arrays that contain the resulting NRd and MRd for every position of the
neutral axis contained in yn.

Domain Ⅱ

The neutral axis is now inside the section, meaning that a part of it will be under tension and
another under compression. This particular situation is shown in the next figure:



Point C corresponds to the maximum strain of the concrete Ůcu. Above the neutral axis the strain
is negative, which translates to a negative stress distribution in the concrete. The integral of the
stress distribution multiplied by the section width gives the total compression acting on the
concrete Nc. The position of Nc along the y axis corresponds to the centroid of the shape of the
stress distribution. The next figure illustrates this situation:



The yellow shape represents the stress in the concrete ůc(y). The value of Nc is given by:

and the distance yGc is given by

The starting position of the neutral axis is 0, and the ending position corresponds to a strain
distribution where both the steel of the bottom bars and the concrete at the top of the section are at
failure. This is what happens when the neutral axis is in B:



The expressions for the strain in the bars remain the same as those for the first domain.
Now let's code all of this in a cell:
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yn_sup=0 
yn_inf=-d*eps_cu/(eps_su-eps_cu) 
yn=np.linspace(yn_sup, yn_inf, n_step) 
psi=eps_su/(d-yn) 
eps_s1=np.full(n_step, eps_su) 
eps_s2=-psi*(yn-c) 
sig_s1=rel_s(eps_s1) 
sig_s2=rel_s(eps_s2) 
  
Nc=np.zeros(n_step) 
Mc=np.zeros(n_step) 
for i in range(n_step): 
    y=np.linspace(0, yn[i], 10) 
    eps_c=-(yn[i]-y)*psi[i] 
    eps_c=np.round(eps_c, 7) 
    sig_c=rel_c(eps_c) 
    Nc[i]=b*np.trapz(sig_c, y) 
    ygc=np.nan_to_num(np.trapz(sig_c*y, y)/np.trapz(sig_c, y)) 
    Mc[i]=Nc[i]*(a/2-ygc) 
  
Nrd_2=Nc+As1*sig_s1+As2*sig_s2 
Mrd_2=-Mc+As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c) 

The first eight lines are exactly the same as those written for the first domain. The only thing that
changes are the starting and ending positions of the neutral axis. In lines 10 and 11 we initialize
Nc and Mc as arrays of zeros. We then start a for loop that cycles through all the neutral axis
positions stored in yn, and calculates Nc, ygc and Mc for each one of them. Let's take a closer
look to what is written inside this for loop. The best way to calculate the integral is to discretyze
the distance from 0 to yn with a finite number of points, and then perform an approximate
integration. In line 13 we create an array of 10 points that go from 0 to the current position of the
neutral axis yn[i]. For each of these points we calculate the corresponding strain, according to
this expression:

and we store the results in an array called eps_c. In line 15 we round eps_c to five decimal points.
The reason why we must do this is a bit cryptic. Because eps_c is the result of operations between
floating point numbers, there is a small (and completely negligible) error introduced by the
machine. The problem arises when we call rel_c and we pass a value that is slightly out of the
bounds defined by the IF statement, such as 0.00350000001. This is exactly what happens when
the neutral axis is in B, and the concrete has reached Ůcu. To correct this we simply round the
values to an acceptable number of decimal poins, in this case 7.



Once the numbers in eps_c have been rounded, we can pass them to rel_c and obtain the stress
distribution, that we store in sig_c. The next step is to integrate sig_c to calculate Nc. We do this
using the trapezoidal rule, which numpy conveniently provides the user in the form of the
function np.trapz(). The first argument contains the array we wish to integrate, and the second
the position of each discretization point. In our case these are sig_c anf y. We use the same
function to calculate ygc, with a little caviat: the first position of the neutral axis is 0, and in this
configuration the integrals become 0 as well. This means that we are trying to calculate 0/0,
which results in a nan value. The function np.nan_to_num() correct this problem by
automatically changing any nan value to 0.
In lines 21 and 22 we calculate NRd and MRd. Remember that a bending moment that puts the
bottom portion of the section under tension is positive. Mc however contains negative values,
because compression stresses are considered to be negative. That is why there is a - sign in front
of Mc, and the same goes for the bending moment given by the top bars.

Domain Ⅲ

The strain in the top-most fiber of the section is now fixed to Ůcu, and the neutral axis continues to
lower until the strain in the bottom bars reaches Ůsy.

The neutral axis now goes from B to C, and the strain distribution rotates around C. The
curvature is given by:

and the strain in the bars is given by:

The code is very similar to what we have already seen for the second domain:
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yn_sup=-d*eps_cu/(eps_su-eps_cu) 
yn_inf=-d*eps_cu/(eps_y-eps_cu) 
yn=np.linspace(yn_sup, yn_inf, n_step) 
psi=-eps_cu/yn 
eps_s1=-psi*(yn-d) 
eps_s2=-psi*(yn-c) 
eps_s1=np.round(eps_s1, 5) 
eps_s2=np.round(eps_s2, 5) 
sig_s1=rel_s(eps_s1) 
sig_s2=rel_s(eps_s2) 
  
Nc=np.zeros(n_step) 
Mc=np.zeros(n_step) 
for i in range(n_step): 
    y=np.linspace(0, yn[i], 10) 
    eps_c=-(yn[i]-y)*psi[i] 
    eps_c=np.round(eps_c, 7) 
    sig_c=rel_c(eps_c) 
    Nc[i]=b*np.trapz(sig_c, y) 
    ygc=np.trapz(sig_c*y, y)/np.trapz(sig_c, y) 
    Mc[i]=Nc[i]*(a/2-ygc) 
  
Nrd_3=Nc+As1*sig_s1+As2*sig_s2 
Mrd_3=-Mc+As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c) 

Domain Ⅳ

The neutral axis now goes from D to the bottom of the section, while the strain in the top-most
fiber remains Ůcu.

The expressions for the curvature and the strain remain the same as those for the third domain.
Essentially the only things that change are the starting and ending positions of the neutral axis,
and the rest of the code remains the same:
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yn_sup=-d*eps_cu/(eps_y-eps_cu) 
yn_inf=a 
yn=np.linspace(yn_sup, yn_inf, n_step) 
psi=-eps_cu/yn 
eps_s1=-psi*(yn-d) 
eps_s2=-psi*(yn-c) 
sig_s1=rel_s(eps_s1) 
sig_s2=rel_s(eps_s2) 
  
Nc=np.zeros(n_step) 
Mc=np.zeros(n_step) 
for i in range(n_step): 
    y=np.linspace(0, yn[i], 10) 
    eps_c=-(yn[i]-y)*psi[i] 
    eps_c=np.round(eps_c, 7) 
    sig_c=rel_c(eps_c) 
    Nc[i]=b*np.trapz(sig_c, y) 
    ygc=np.trapz(sig_c*y, y)/np.trapz(sig_c, y) 
    Mc[i]=Nc[i]*(a/2-ygc) 
  
Nrd_4=Nc+As1*sig_s1+As2*sig_s2 
Mrd_4=-Mc+As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c) 

Domain Ⅴ

The neutral is now below the section, and it continues to lower until yn=Ð. The strain distribution
rotates around F, located at

The curvature is given by:

The strain in the bars can be calculated with the same expressions used for the fourth domain.



Apart from the starting and ending locations of the neutral axis, the code remains the same.
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yn_sup=a 
yn_inf=a+9999 
yn=np.linspace(yn_sup, yn_inf, n_step) 
t=3/7*a 
psi=-eps_cc/(yn-t) 
eps_s1=-psi*(yn-d) 
eps_s2=-psi*(yn-c) 
sig_s1=rel_s(eps_s1) 
sig_s2=rel_s(eps_s2) 
  
Nc=np.zeros(n_step) 
Mc=np.zeros(n_step) 
for i in range(n_step): 
    y=np.linspace(0, a, 10) 
    eps_c=-(yn[i]-y)*psi[i] 
    eps_c=np.round(eps_c, 7) 
    sig_c=rel_c(eps_c) 
    Nc[i]=b*np.trapz(sig_c, y) 
    ygc=np.trapz(sig_c*y, y)/np.trapz(sig_c, y) 
    Mc[i]=Nc[i]*(a/2-ygc) 
  
Nrd_5=Nc+As1*sig_s1+As2*sig_s2 
Mrd_5=-Mc+As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c) 



Plotting the results

We are finally ready to plot the limit resistance diagram of the section:
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plt.style.use("seaborn-whitegrid") 
fig, ax=plt.subplots(figsize=(6,4)) 
ax.plot(Nrd_1*1E-3, Mrd_1*1E-6) 
ax.plot(Nrd_2*1E-3, Mrd_2*1E-6) 
ax.plot(Nrd_3*1E-3, Mrd_3*1E-6) 
ax.plot(Nrd_4*1E-3, Mrd_4*1E-6) 
ax.plot(Nrd_5*1E-3, Mrd_5*1E-6) 
ax.set_xlabel("N [KN]") 
ax.set_ylabel("M [KNm]") 



Conclusions

If you followed through this chapter carefully, you should now understand how to use functions
to organize your code, and how to use for loops to perform operations on array elements. In the
next chapter we will use the diagram that we have obtained to perform member verifications on a
concrete beam. Obviously, the code only works for a rectangular section with top and bottom
reinforcement bars, but expanding it shouldn't be difficult.



APPENDIX: saving the code in an external file

The notebook that we have written in this chapter is able to calculate the resistance diagram of a
rectangular concrete section. However, it is rather impractical to utilize. Suppose that you had to
plot the resistance diagram of ten different sections: you would need to change the input data of
the notebook each time, surely there must be a better way to approach this problem. The solution
is to wrap everything that we have written inside a single function. This function will take as
inputs the dimensions of whatever cross-section we are considering, and return the resistance
diagram. Then we will be able to call this function whenever we want. In order to do this, we
need to create a python script that contains our function. A python script is just a text file that
ends in .py that has some python code written inside.
Navigate to the folder where you have saved the notebook created in this chapter, and create a
new file named MN.py. You can do this by right-clicking and selecting new>text document. This
will create a .txt file that can then be renamed to MN.py. To edit its contents you can open it using
notepad.
MN.py will contain a function called getDomain(a,b,c,As1,As2,fck,fyk) that takes the cross-
section dimensions and the material properties as inputs. The block of code inside this function
will be exactly the same as the code found in the cells of the notebook, so it is just a matter of
copy-pasting the contents of each cell. Because The function will use numpy arrays, we need to
import the library with the usual line of code import numpy as np, which will be placed in the
first line of the file.
Here you have the whole function written in a single code block. You can copy-paste everything
inside your file, or download a copy of MN.py from https://python4civil.weebly.com/m-n-
diagram.html.

https://python4civil.weebly.com/m-n-diagram.html
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import numpy as np 
  
def getDomain(a,b,c,As1,As2,fck,fyk): 
 '''
 Calculates Mrd for a given section and a
 given axial force.
 PARAMETERS:
 a =   section height (mm)
 b =   section width (mm)
 c =   concrete cover (mm)
 As1 = bottom rebar area (mm^2) 
 As2 = top rebar area (mm^2)
 fck = concrete resistance (Mpa)
 RETURNS:
 (Nrd, Mrd) = resistance diagram (kNm)
 ''' 
 d=a-c 
  
 #concrete 
 gamma_c=1.5 
 fcd=0.85*fck/gamma_c #MPa 
 eps_cc=-0.0020 
 eps_cu=-0.0035 
  
 #steel 
 gamma_s=1.15 
 fyd=fyk/gamma_s #MPa 
 Es=200000 #MPa 
 eps_su=0.01 
 eps_y=fyd/Es 
  
 def rel_c(eps): 
  # stress-strain for concrete 
  n=len(eps) 
  sig=np.zeros(n) 
  for i in range(n): 
   if eps[i]>=0: 
    sig[i]=0 
   elif 0>eps[i] and eps[i]>=eps_cc: 
    sig[i]=-fcd*(2-eps[i]/eps_cc)*eps[i]/eps_cc 
   elif eps_cc>eps[i] and eps[i]>=eps_cu: 
    sig[i]=-fcd 
   else: 
    print('invalid eps value') 
  return(sig) 
  
 def rel_s(eps): 
  # stress-strain for steel 
  n=len(eps) 
  sig=np.zeros(n) 
  for i in range(n): 
   if -eps_su<=eps[i] and eps[i]<=-eps_y: 
    sig[i]=-fyd 
   elif -eps_y<eps[i] and eps[i]<=eps_y: 



 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 

    sig[i]=eps[i]*Es 
   elif eps_y<eps[i] and eps[i]<=eps_su: 
    sig[i]=fyd 
   else: 
    print('invalid eps value') 
  return(sig) 
  
 n_step=50 
 # DOMAIN I 
 yn_sup=-9999 
 yn_inf=0 
 yn=np.linspace(yn_sup, yn_inf, n_step) 
 psi=eps_su/(d-yn) 
 eps_s1=np.full(n_step, eps_su) 
 eps_s2=-psi*(yn-c) 
 sig_s1=rel_s(eps_s1) 
 sig_s2=rel_s(eps_s2) 
 Nrd_1=As1*sig_s1+As2*sig_s2 
 Mrd_1=As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c) 
  
 #DOMAIN II 
 yn_sup=0.1 
 yn_inf=-d*eps_cu/(eps_su-eps_cu) 
 yn=np.linspace(yn_sup, yn_inf, n_step) 
 psi=eps_su/(d-yn) 
 eps_s1=np.full(n_step, eps_su) 
 eps_s2=-psi*(yn-c) 
 sig_s1=rel_s(eps_s1) 
 sig_s2=rel_s(eps_s2) 
 Nc=np.zeros(n_step) 
 Mc=np.zeros(n_step) 
 for i in range(n_step): 
  y=np.linspace(0, yn[i], 50) 
  eps_c=-(yn[i]-y)*psi[i] 
  eps_c=np.round(eps_c, 7) 
  sig_c=rel_c(eps_c) 
  Nc[i]=b*np.trapz(sig_c, y) 
  ygc=np.nan_to_num(np.trapz(sig_c*y, y)/np.trapz(sig_c, y)) 
  Mc[i]=Nc[i]*(a/2-ygc) 
 Nrd_2=Nc+As1*sig_s1+As2*sig_s2 
 Mrd_2=-Mc+As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c) 
  
 #DOMAIN III 
 yn_sup=-d*eps_cu/(eps_su-eps_cu) 
 yn_inf=-d*eps_cu/(eps_y-eps_cu) 
 yn=np.linspace(yn_sup, yn_inf, n_step) 
 psi=-eps_cu/yn 
 eps_s1=-psi*(yn-d) 
 eps_s2=-psi*(yn-c) 
 eps_s1=np.round(eps_s1, 5) 
 eps_s2=np.round(eps_s2, 5) 
 sig_s1=rel_s(eps_s1) 
 sig_s2=rel_s(eps_s2) 
 Nc=np.zeros(n_step) 
 Mc=np.zeros(n_step) 
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 for i in range(n_step): 
  y=np.linspace(0, yn[i], 50) 
  eps_c=-(yn[i]-y)*psi[i] 
  eps_c=np.round(eps_c, 7) 
  sig_c=rel_c(eps_c) 
  Nc[i]=b*np.trapz(sig_c, y) 
  ygc=np.trapz(sig_c*y, y)/np.trapz(sig_c, y) 
  Mc[i]=Nc[i]*(a/2-ygc) 
 Nrd_3=Nc+As1*sig_s1+As2*sig_s2 
 Mrd_3=-Mc+As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c)  
  
 #DOMAIN IV 
 yn_sup=-d*eps_cu/(eps_y-eps_cu) 
 yn_inf=a 
 yn=np.linspace(yn_sup, yn_inf, n_step) 
 psi=-eps_cu/yn 
 eps_s1=-psi*(yn-d) 
 eps_s2=-psi*(yn-c) 
 sig_s1=rel_s(eps_s1) 
 sig_s2=rel_s(eps_s2) 
 Nc=np.zeros(n_step) 
 Mc=np.zeros(n_step) 
 for i in range(n_step): 
  y=np.linspace(0, yn[i], 50) 
  eps_c=-(yn[i]-y)*psi[i] 
  eps_c=np.round(eps_c, 7) 
  sig_c=rel_c(eps_c) 
  Nc[i]=b*np.trapz(sig_c, y) 
  ygc=np.trapz(sig_c*y, y)/np.trapz(sig_c, y) 
  Mc[i]=Nc[i]*(a/2-ygc) 
 Nrd_4=Nc+As1*sig_s1+As2*sig_s2 
 Mrd_4=-Mc+As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c) 
  
 #DOMAIN IV 
 yn_sup=a 
 yn_inf=a+9999 
 yn=np.linspace(yn_sup, yn_inf, n_step) 
 t=3/7*a 
 psi=-eps_cc/(yn-t) 
 eps_s1=-psi*(yn-d) 
 eps_s2=-psi*(yn-c) 
 sig_s1=rel_s(eps_s1) 
 sig_s2=rel_s(eps_s2) 
 Nc=np.zeros(n_step) 
 Mc=np.zeros(n_step) 
 for i in range(n_step): 
  y=np.linspace(0, a, 50) 
  eps_c=-(yn[i]-y)*psi[i] 
  eps_c=np.round(eps_c, 7) 
  sig_c=rel_c(eps_c) 
  Nc[i]=b*np.trapz(sig_c, y) 
  ygc=np.trapz(sig_c*y, y)/np.trapz(sig_c, y) 
  Mc[i]=Nc[i]*(a/2-ygc) 
 Nrd_5=Nc+As1*sig_s1+As2*sig_s2 
 Mrd_5=-Mc+As1*sig_s1*(a/2-c)-As2*sig_s2*(a/2-c) 
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 Mrd=np.hstack((Mrd_1*1E-6,Mrd_2*1E-6, Mrd_3*1E-6, 
                 Mrd_4*1E-6, Mrd_5*1E-6)) 
 Nrd=np.hstack((Nrd_1*1E-6,Nrd_2*1E-6, Nrd_3*1E-6, 
        Nrd_4*1E-6, Nrd_5*1E-6)) 
  
 return((Nrd, Mrd)) 



Designing a concrete beam

In this chapter we will design a two-span concrete beam in bending and shear,
using the domain calculated in the previous chapter. The beam is exactly the
same as the one in in the chapter about pandas, so we will import the bending
moment and shear distributions as .csv files. This is a really simple example, so
only two different load combinations will be considered. Still, two will be more
than enough to explain how to find and plot the envelope and the maximum-
minimum values. Then, we will find the critical sections to be considered, and
calculate MRd for each one of them. Finally, we will move on to the shear
verification of the beam. Throughout this chapter, verifications will be performed
according to UNI EN 1992-1-1. Even if you are not familiar with european
standards, you won't have any problem understanding this example. The goal is
learning how to use python, not learning how to use the standards. By the end of
this chapter, you won't have any problems applying what you have learned to
your particular design environment.



Dimensions and loads

The load combinations are shown in the next figure:



Importing the necessary libraries

In this example we will use numpy, pandas and matplotlib. In addition, we will
also use the MN.py file created at the end of the previous chapter. Create a new
folder containing MN.py and an empty jupyter notebook. In the first cell write:

1 
2 
3 
4

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import MN

the last line of code loads all the contents of MN.py in the notebook. Now we
have access to the function getDomain(), and we use it by writing
MN.getDomain().

NOTE

If you modify the contents of MN.py after it has been loaded in the
notebook, the changes won't register untill you restart the notebook's
kernel.



Calculating the envelope of the distributions

Next, we need to import the bending moment and shear distributions. All the data
we need is contained in a file called beam.csv that can be downloaded from
https://python4civil.weebly.com/concrete-beam.html. The first column of the file
contains the x coordinates of the beam, and the rest contain the values of the
bending moment and shear at each point. In the next code block we use pandas to
load the data and store it inside five numpy arrays:
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data=pd.read_csv("beam.csv") 
x=np.array(data.x) 
M1=np.array(data.M1) #kNm 
M2=np.array(data.M2) #kNm 
V1=np.array(data.V1) #kN 
V2=np.array(data.V2) #kN

The distributions are shown in the next figure:

The distributions have been loaded and we are ready to calculate the envelope,
meaning that we want to keep only the maximum values of the two load
combinations. In order to do this we will create two separate vectors for the
positive and negatives values, as you can see in the next code cell:

https://python4civil.weebly.com/concrete-beam.html
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M_neg=np.minimum(M1,M2) 
M_pos=np.maximum(M1,M2) 
  
M_neg[M_neg>0]=0 
M_pos[M_pos<0]=0 
  
V_neg=np.minimum(V1,V2) 
V_pos=np.maximum(V1,V2) 
  
V_neg[V_neg>0]=0 
V_pos[V_pos<0]=0

By plotting the arrays that we have just created we obtain the following
distributions_

Extracting the maximum values from the envelope distributions

Now that we have the envelopes for both bending moment and shear, we need to
extract the local maxima of the two distributions, so that we can start designing
the critical sections. The problem is, numpy does not have a module for this
specific task. Another well-known library called scipy would be able to do this,
but we will code a solution ourselves, for the sake of learning. Let's define a
function called find_maxima that takes an array as input, and outputs the local
maxima and their locations in the array as a tuple:
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def find_maxima(a): 
    maxima=[] 
    index=[] 
    n=len(a) 
    for i in range(n): 
        if i==0: 
            if a[0]>a[1]: 
                maxima.append(a[0]) 
                index.append(i) 
        elif i==n-1: 
            if a[-1]>a[-2]: 
                maxima.append(a[-1]) 
                index.append(i) 
        else: 
            if a[i]>=a[i-1] and a[i]>a[i+1]: 
                maxima.append(a[i]) 
                index.append(i) 

The code is pretty straight-forward. The input array a is scanned using a for
loop. There is an IF-ELSE statement that checks wether the loop is currently at
the beginning or the end of the array, to avoid indexing a wrong position. For
each value of i we check wether the adiacent positions of a[i] hold a smaller
value than a[i]. If that is the case, the value is stored inside maxima and i is
stored inside index.
We can use this function to find the maxima of M_pos and M_neg by passing
them as arguments:
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M_pos_max, index_pos_M=find_maxima(M_pos) 
M_neg_max, index_neg_M=find_maxima(abs(M_neg)) 
M_pos_max=np.array(M_pos_max) 
M_neg_max=-np.array(M_neg_max) 
  
V_pos_max, index_pos_V=find_maxima(V_pos) 
V_neg_max, index_neg_V=find_maxima(abs(V_neg)) 
V_pos_max=np.array(V_pos_max) 
V_neg_max=-np.array(V_neg_max) 

Note that because M_neg and V_neg contain only negative values, we need to
use abs() before passing them to find_maxima(). Then we can plot the location
of the maxima using a scatter plot, obtaining something similar to the next figure:



Now that we know the maximum values of M and V we can choose the materials
and the section properties accordingly. Of course there is always some trial and
error during this process, and often there are limiting factors on the materials that
can be used and the dimensions of the beam. In this example we will keep things
really simple, and consider three critical sections:

section 1: located where the bending moment of the first span
reaches its maximum
section 2: located in the center support
section 3: located where the bending moment of the second span
reaches its maximum

The dimensions and the disposition of the reinforcement bars for each critical
section are displayed in the next figure:



The class of the concrete is C25/30, and the steel material is B450C. As specified
by the Eurocodes, ɔc=1.5 and ɔs=1.15. Then

Let's store all the material and section properties into variables:
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a=400 #mm 
b=300 #mm 
c=50 #mm 
d=a-c #mm 
z=0.9*d #mm 
Abar=201.062 #mm^2 
  
fck=25 #N/mm^2 
fyk=450 #N/mm^2 
gamma_s=1.15 
gamma_c=1.5 
fcd=0.85*fck/gamma_c #N/mm^2

where:

a is the height of the section



b is the width of the section
c is the concrete cover
d is the effective section
z is the inner lever arm
Abar is the total area of a ū16 rebar



Bending moment resistance of the sections

It is now time to use the functions contained in MN.py. To be more specific, we
will use MN.getDomain() to retrieve the limit resistance diagrams for each one of
the sections. The function needs the following parameters:

1. Section height (mm)
2. Section width (mm)
3. Bottom rebar area (mm2)
4. Top rebar area (mm2)
5. Concrete compressive strength fck (N/mm2)
6. Steel yeld strength fyk (N/mm2)

The output is a tuple containing NRd and MRd. We don't actually need the whole
domain, we only want to know MRd for NRd=0. We will use the numpy function
interp to interpolate the domain and find MRd(NRd=0):
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Nrd_tot, Mrd_tot=MN.getDomain(a, b, c, 2*Abar, 2*Abar, fck, fyk) 
Mrd1=np.interp(0, Nrd_tot[::-1], Mrd_tot[::-1]) 
Nrd_tot, Mrd_tot=MN.getDomain(a, b, c, 3*Abar, 2*Abar, fck, fyk) 
Mrd3=np.interp(0, Nrd_tot[::-1], Mrd_tot[::-1]) 
Mrd2=-Mrd3 

In line 1 we pass getDomain all the necessary arguments to find the resistance
domain for section 1. The function returns two vectors: Nrd_tot and Mrd_tot.
These are the x and y coordinates of the domain. In line 2 using np.interp we
interpolate these two vectors to get the value of MRd for NRd=0. The way this
function works is very simple: the first parameter is the value for which we wish
to interpolate, the second is a vector that contains the positions along the x axis
and the third is a vector containing the value corresponding to each position. In
this case Nrd_tot will act as the x axis and Mrd_tot will act as the y axis. There is
one important caviat however: interp only works if the second parameter is a
vector whose values are sorted in ascending order (like the horizontal axis of a
cartesian graph). The output of getDomain, however, gives us a Nrd_tot vector
sorted in descending order (because compressive stresses are assumed to be
negative, refer to the previous chapter for more informations on this topic).
Basically, we need to revers the order of Nrd_tot and Mrd_tot for interp to work,
and we do this with [::-1]. In line 3 we re-use Nrd_tot and Mrd_tot to store the



resistance domain for section 3, and then interpolate for Nrd_tot=0. Finally,
because the bending resistance of section 2 to negative bending moments is the
same as section 3, there is no need to call getDomain again. So in line 5 we
simply invert the sign of Mrd3 to get Mrd2.

NOTE

The function getDomain calculates the resistance domain for positive
bending moments. To calculate the resistance to negative bending
moments we simply need to switch the positions of the reinforcement
bars, and treat the negative bending moment as if it was positive.



Section verifications

Now that we know the bending moment resistances for each of the three section
we can compare them with the design bending moments calculated before. A
simple if-else statement will suffice for this example:
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if M_pos_max[0]<Mrd1: 
    print("sec. 1: VERIFIED") 
else: 
    print("sec. 1: NOT VERIFIED")     
if M_neg_max[0]>Mrd2: 
    print("sec. 2: VERIFIED") 
else: 
    print("sec. 2: NOT VERIFIED")     
if M_pos_max[1]<Mrd3: 
    print("sec. 3: VERIFIED") 
else: 
    print("sec. 3: NOT VERIFIED") 

sec. 1: VERIFIED
sec. 2: VERIFIED
sec. 3: VERIFIED

The problem with this approach is that it is not very scalable, because it only
works with three sections. If we had a beam with three spans instead of just two
we would need to add more lines. Ideally everything should be as automated as
possible, but for now this method will be enough.



Shear verification

Section 6.2.2 of EN 1992-1-1 provides the formulas used for shear member
verification. For elements that do not require design shear reinforcement the
value of the shear resistance VRd,c is given by:

with a minimum of

where:

fck is in MPa
1+(200/d)0.5 with d in mm
ɟl=Asl/(bwd)Ò0.02
Ssl is the area of the rebarsunder tension
bw is the width of the cross-section
ůcp=NEd/Ac<0.2fcd MPa
NRd is the axial force in the cross-section
VRd,c is in newton.

If the design shear VEd is less than VRd,c, then there is no need to carry out the
verifications, as long as the minimum requirements specified in section 9.2.2 of
eurocode 2 are met.
The first thing to do in jupyter is to find the maximum shear value:
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Vmax=max(max(V_pos_max), max(abs(V_neg_max))) 
print("Vmax = \%d"\%(Vmax)+" kN") 

Vmax = 75 kN

Then it is just a matter of implementing the formulas:
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bw=b  
k=1+(200/d)**0.5 
rho_l=max(3*Abar/(bw*d), 0.02) 
sig_cp=0  
Ac=b*a 
CRd_c=0.18/gamma_c 
k1=0.15 
nu_min=0.035*k**1.5*fck**0.5 
  
Vrd_c=max((CRd_c*k*(100*rho_l*fck)**(1/3)+k1*sig_cp)*bw*d, 
         (nu_min+k1*sig_cp)*bw*d) 
print("Vrd_c = \%d"\%(Vrd_c*0.001)+" kN") 

Vrd_c = 81 kN

Because Vmax<Vrd_c we can stop here. Eurocode 2 then prescribes a minimum
concrete reinforcement ratio of

that needs to be observed when choosing the area of the shear reinforcement. We
will use ū8 vertical links with a step of 250 mm, which give us the following
results:
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Asw=100 #mm^2, 2phi8 
s=250 #mm, step 
rho_w=Asw/(s*bw) 
rho_w_min=(0.08*(fck)**0.5)/fyk 
print("rho_w= \%.6f"\%(rho_w)) 
print("rho_w_min= \%.6f"\%(rho_w_min)) 

rho_w= 0.001333
rho_w_min= 0.000889

note that s has been chosen according to



Conclusions

Hopefully this chapter has given you a solid starting point to begin developing
your own member verifications in python. Later in this book you will learn how
to use pandas to create more scalable applications, and also how to typeset the
results in various useful formats.



Designing a steel column

The goal of this chapter is to design a steel column subject to vertical and horizontal
loads. We will use pandas manage different load combinations, and conveniently
store the results in a table. The verifications will be carried out in accodance to the
eurocodes, but like in the previous chapter you don't need to be familiar with the
european standards to follow along.
As always, let's create a new jupyter notebook and import all the necessary libraries:
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import numpy as np
import pandas as pd

We will consider a column fixed at the base and free at the top. The next figure shows
the position of the loads:



N

H

L

In this example we will consider L to be 7.5 m, and the loads to be grouped in three
different load combinations:



Combo 1: NEd=300 kN, HEd=30 kN
Combo 2: NEd=500 kN, HEd=10 kN
Combo 3: NEd=250 kN, HEd=40 kN

Now let's input all these values in the notebook. We will use a variable named L to
store the length, and a dataframe named loads to store the loads combinations:
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L=7.5*10**3 #mm 
combo1=pd.Series({"Ned":300, "Hed":30}, name="Combo1") 
combo2=pd.Series({"Ned":500, "Hed":10}, name="Combo2") 
combo3=pd.Series({"Ned":250, "Hed":40}, name="Combo3") 
  
loads=pd.DataFrame([combo1, combo2, combo3]) 
loads["Med"]=loads.Hed*L*10**(-3) 
loads 

Ned Hed Med
Combo1 300 30 225.0

Combo2 500 10 75.0

Combo3 250 40 300.0

Instead of creating loads all in one go, we first create three series called combo1,
combo2 and combo3 to make the code cleaner. The maximum bending moment will
be equal to H*L, so in line 7 we create a new column called Med and store the result
of this calculation in it.



Materials

In this example we will use a standard S355 as the steel grade. Let's store all the
properties that we need into variables:

1 
2 
3

fyk=355 #N/mm^2 
E=200000 #Mpa 
G = 81000 #N/mm^2



Cross-section

Now let's pick a standard hot-rolled section and store its properties into correspondent
variables. We will consider a HE300B, with the following characteristics:

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20

# HE300B 
h=300 #mm (section height) 
b=300 #mm (section width) 
tw=11 #mm (web width) 
tf=19 #mm (flange width) 
A=161.3*10**2 #mm^2 (total area) 
Iy=25170*10**4 #mm^4 (second moment of area, y axis) 
iy=13*10 #mm (radius of gyration, y axis) 
Wy=1678*10**3 #mm^3 (elastic section modulus, y axis) 
  
Iz=8563*10**4 #mm^4 (second moment of area, z axis) 
iz=7.58*10 #mm (radius of gyration, z axis) 
Wz=570.9*10**3 #mm^3 (elastic section modulus, z axis) 
  
It=185*10**4 #mm^4 (torsional constant) 
Iw=(Iz*(h-tf)**2)/4 #mm^6 (warping constant) 
 
fyk=355 #N/mm^2 
E=200000 #Mpa 
G = 81000 #N/mm^2

Where the y is the strong axis and z is the weak axis. A more practical approach
would be to load the section properties from an external database, such as an excel or
csv document.



Column buckling

Steel columns almost never undergo cross-section failure, because the buckling
resistance of the member is usually much smaller than the resistance of the cross
section. This example makes no exception, so for the sake of brevity we will skip
section verifications.
According to Eurocode 3 (ENV 1993-1-1), Members subjected to combined bending
and axial compression should satisfy the following equations:

where

ɢy, ɢz are the reduction factors due to flexural buckling
ɢLT is the reduction factor due to lateral torsional buckling
NRk=AĿfy
My,Rk=Wel,yĿfy
Mz,Rk=Wel,zĿfy
kyy, kyz, kzy and kzz are the interaction factors

In our case Mz,Ed=0, so we can remove it from the formulas:

The reduction factor ɢy can be calculated as follows:



In our case:

The buckling curve to be considered is a function of h/b, as stated in table 6.2 of the
eurocode. In our case h/b=1 and the buckling curve is a, which gives us an
imperfection factor Ŭ=0.21.
Having understood the procedure, let's implement the formulas to calculate ɢy:

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10

alpha_y = 0.21 
Lcr_y = 2*L 
lambda_y = (Lcr_y/iy)*(1/lambda_1) 
phi_y = 0.5*(1+alpha_y*(lambda_y-0.2)+lambda_y**2) 
chi_y = 1/(phi_y+np.sqrt(phi_y**2-lambda_y**2)) 
print("alpha_y= %.2f"%(alpha_y)) 
print("Lcr_y= %.2f"%(Lcr_y)) 
print("lambda_y= %.2f"%(lambda_y)) 
print("phi_y= %.2f"%(phi_y)) 
print("chi_y= %.7f"%(chi_y)) 

alpha_y= 0.21
Lcr_y= 15000.00
lambda_y= 1.55
phi_y= 1.84
chi_y= 0.3531319

Next we need to calculate ɢLT, according to what specified in section 6.3.2.2 of
Eurocode 3.



Mcr is the elastic critical moment for lateral-torsional buckling. Eurocode 3 does not
provide a specific formula to calculate it, leaving to the engineers the choice of a
suitable expression. The previous version of the eurocode suggested this formula:

where kw and k depend on the types of constraints, and C1 on the bending moment
distribution. For a column (or beam) with one fixed end the literature suggests kw=0.7,
k=0.7 and C1=0.7.

ŬLT depends on the buckling curve, and in our case is equal to 0.34. As for ɓ, the
recommended value is 0.75.
Now let's implement all these formulas in a notebook cell:
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k=0.7 
kw=0.7 
C1 = 2.092 
alpha_lt = 0.34 
lambda_lt_0 = 0.4 
beta = 0.75 
  
Mcr = C1*np.pi**2*E*Iz/((k*L)**2)*np.sqrt((k/kw)*Iw/(Iz)\ 
                    +(k*L)**2*G*It/(np.pi**2*E*Iz))*1e-6 
  
lambda_lt = np.sqrt(Wy*fyk/(Mcr*1e6)) 
phi_lt = 0.5*(1+alpha_lt*(lambda_lt-lambda_lt_0)+beta*lambda_lt**2) 
chi_lt = 1/(phi_lt+np.sqrt(phi_lt**2-beta*lambda_lt**2)) 
  
print("Mcr= %.2f"%(Mcr)) 
print("lambda_lt= %.2f"%(lambda_lt)) 
print("phi_lt= %.2f"%(phi_lt)) 
print("chi_lt= %.2f"%(chi_lt)) 



Mcr= 2696.44
lambda_lt= 0.47
phi_lt= 0.59
chi_lt= 0.97

Now let's calculate kyy and kzy, according to what specified in Annex B of Eurocode
3. For class 1 and 2 sections the following expressions apply:

Implementing the formulas we obtain:
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k=0.7 
kw=0.7 
C1 = 2.092 
alpha_lt = 0.34 
lambda_lt_0 = 0.4 
beta = 0.75 
  
Mcr = C1*np.pi**2*E*Iz/((k*L)**2)*np.sqrt((k/kw)*Iw/(Iz)\ 
                    +(k*L)**2*G*It/(np.pi**2*E*Iz))*1e-6 
  
lambda_lt = np.sqrt(Wy*fyk/(Mcr*1e6)) 
phi_lt = 0.5*(1+alpha_lt*(lambda_lt-lambda_lt_0)+beta*lambda_lt**2) 
chi_lt = 1/(phi_lt+np.sqrt(phi_lt**2-beta*lambda_lt**2)) 
  
print("Mcr= %.2f"%(Mcr)) 
print("lambda_lt= %.2f"%(lambda_lt)) 
print("phi_lt= %.2f"%(phi_lt)) 
print("chi_lt= %.2f"%(chi_lt)) 

kyy= 1.08
kzz= 1.44
kyz= 0.86
kzy= 1.00\\

The last elements that we need are NRk and $MRk,y, given by the following
expressions:



Implementing the formulas we obtain:

1 
2 
3 
4 
5

Nrk = A*fyk*0.001   # kN 
Mrk_y = Wy*fyk*1e-6  # kNm 
  
print("Nrk= %.2f"%(Nrk)) 
print("Mrk_y= %.2f"%(Mrk_y)) 

Nrk= 5726.15
Mrk_y= 595.69



Member verification

We finally have everything that we need to implement the verification formulas:

Because we have conveniently stored the loads inside the columns of a dataframe, we
can write the formulas once and obtain the results for every load combination:

1 
2 
3 
4 
5 
6 
7

gamma_m1 = 1.05 
results=pd.DataFrame() 
results["check1"] = loads.Ned/(chi_y*Nrk/gamma_m1)\ 
            +kyy*(loads.Med)/(chi_lt*Mrk_y/gamma_m1) 
results["check2"] = loads.Ned/(chi_y*Nrk/gamma_m1)\ 
            +kzy*(loads.Med)/(chi_lt*Mrk_y/gamma_m1) 
results 

check1 check2
Combo1 0.596262 0.563633

Combo2 0.406460 0.395584

Combo3 0.717126 0.673621

In line 1 we specify the partial factor for resistance of members to instability ɔM1, and
then in line 2 we create an empty dataframe called results. Then we apply the
formulas above storing the results in two new columns check1 and check2. All the
values are smaller than 1, so the verification can be considered satisfied.



Conclusions

This chapter is meant to be an introduction on how to use pandas to store data and
perform calculations. The key aspect here is scalability: No matter how many load
combinations there are, the code that you have written will always work. In the next
chapter you will use pandas more extensively, and learn how to export a notebook in
LaTeX format.



Exporting in Latex

In this chapter we will create a Jupyter notebook that can be exported in LaTeX format. In
order to have some formulas to work with we will consider a simply supported steel beam,
subject to an uniform load q.
Before we start writing any code, however, we need to expand the capabilities of Jupyter using
third-party extensions. To be more specific, we will install a set of extensions called
nbextensions, that will allow as to use Latex syntax in markdown cells and also to hide the
code we write.

NOTE

Even if you are not familiar with LaTeX, you can still follow along the code
written in this chapter. The code works anyway, whether you have installed
nbextensions or not.



Installing nbextensions

If you followed the Anaconda installation at the beginning of the book, your computer should
also have installed anaconda prompt by default. Anaconda prompt is a command line
interface that allows the user to install additional packages using the pip or conda package
managers. We will use conda to install nbextensions. Open anaconda navigator, and type:
conda install -c conda-forge jupyter\_contrib\_nbextensions

This will install nbextensions from the anaconda repositories, so you need to be connected to
the internet for the command to run.

NOTE

If you have trouble installing nbextensions, you can find plenty of tutorials online.
I suggest you take a look to the official nbextensions installation guide, which can
be found here:
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/install.html

Now when you start jupyter notebook you can access the configuration page by writing
"nbextensions" in place of "tree" in the address bar. The configuration page looks like this:

From here you can activate the extensions that you need. In order to be able to write latex
syntax inside markdown cell we will need the extension called (some) LaTeX environments
for Jupyter, and in order to hide code cells we will also need the hide input extension.
Now create a new notebook. You should see some new icons in the toolbar:

The button with the ^ symbol is used to hide the input of code cells. Now that LaTeX_envs is
enabled we can also use some basic LaTeX environments inside markdown cells, like section
and itemize for example, or math formulas using dollar signs.

https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/install.html


Formatting the output of cells in LaTeX

If the final goal is to output the notebook as a LaTeX document (.tex), then we need a way to
display the outputs of code cells accordingly. A way to do this is using the Latex module
contained in IPython.display:

1 
2 
3 
4 
5

from IPython.display import Latex 
a=15 
b=7 
res=a+b 
display(Latex("$a+b=%d+%d=%d$"%(a,b,res))) 

a + b = 15 + 7 = 22

As you can see the output of the cell is now beautifully rendered in LaTeX.



Converting dataframes to LaTeX tables

Pandas gives the user the possibility to convert any dataframe into a LaTeX table, using
pandas.DataFrame.to\_latex(). Here is an example:

1 
2 
3

import pandas as pd 
df=pd.DataFrame({"A":[3,2,1,6], "B":[4,5,9,7]}, index=[0,1,2,3]) 
display(Latex(df.to_latex(bold_rows=True, column_format="lll"))) 

\begin{tabular}{lll} 
\toprule 
{} &  A &  B \\ 
\midrule 
\textbf{0} &  3 &  4 \\ 
\textbf{1} &  2 &  5 \\ 
\textbf{2} &  1 &  9 \\ 
\textbf{3} &  6 &  7 \\ 
\bottomrule 
\end{tabular} 

The function accepts a lot of parameters to customize the appearence of the table. Setting
bold_rows to True, for example, will make print the row index in bold font. Another useful
parameter is column_format, to which you can pass a string such as "rlc" to specify the
alignment of the columns ("r"=right, "l"=left, "c"=center). Notice how in order to display the
LaTeX syntax correctly we need to wrap df.to_latex() inside Latex(). The table however is
still very basic: it does not have a caption, and it does not look very good. An easy solution is
simply to add more LaTeX code around the output of Latex(df.to_latex()). For example,
we could use the table environment like this:

1 
2 
3 
4

display(Latex( 
    "\\begin{table}[H]\n\centering\n"\ 
    +df.to_latex(bold_rows=True, column_format='lll')\ 
    +"\caption{My Table}\n \end{table}")) 



\begin{table}[H] 
\centering 
\begin{tabular}{lll} 
\toprule 
{} &  A &  B \\ 
\midrule 
\textbf{0} &  3 &  4 \\ 
\textbf{1} &  2 &  5 \\ 
\textbf{2} &  1 &  9 \\ 
\textbf{3} &  6 &  7 \\ 
\bottomrule 
\end{tabular} 
\caption{My Table} 
 \end{table} 

The output of df.to\_latex() is just a simple string, so we can concatenate it with any other
strings using +. In this case we are wrapping it inside \begin{table} \end{table} as well as
specifying a caption using caption{My Table}. Because strings are one-line sequences of
characters, we need to tell Latex() where the linebreaks are using \n.
The final result is a code cell that has a LaTeX table in the output. Unfortunately jupyter is not
able to render it, so all we see is the raw LaTeX code. After you have exported the notebook,
however, this raw code will become part of a .tex file, and thus you will able to render it using
any LaTeX editor of your choice.



Calculating the deflection of a steel beam

In this example we will consider three different simply supported steel beams of length L1, L2
and L3 subjected to three different uniform loads q1, q2, and q3. For each beam we will
calculate the maximum deflection.

Beam 1 L1=5m, q1=20 KN/m
Beam 2 L2=6m, q2=18 KN/m
Beam 3 L3=6.5m, q3=13 KN/m

All three beams will have the same cross section and material. We will use a standard IPE220,
with a second moment of inertia around the strong axis of 2772 mm4. The young modulus of
the steel is 200000 Mpa. As always, the first step is to save all the relevant data into variables
or dataframes:

1 
2 
3 
4 
5 
6 
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import pandas as pd
import numpy as np 
  
Iy=2772*10**4 #mm^4 
E=200000 #Mpa 
  
loads=np.array([20, 18, 13]) #kN/m 
lengths=np.array([5, 6, 6.5]) #m

To demonstrate the capability of exporting matplotlib plots in LaTeX, let's plot the moment
distribution of the first beam:

1 
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import matplotlib.pyplot as plt 
  
x=np.linspace(0,lengths[0], 51) 
M1=loads[0]*lengths[0]*x/2-(loads[0]*x**2)/2 
fig, ax= plt.subplots() 
ax.invert_yaxis() 
ax.plot(M1) 
plt.savefig("plot1.pdf") 
plt.show() 



Now we need to calculate the maximum deflection of the beam, using the well-known formula
from elastic theory:

All the calculations will be performed inside a dataframe called results. Each row represents
one of the beams, and we will add more columns as we calculate new quantities. First, we
create the dataframe specifying only the index:

1 results=pd.DataFrame(index=(["Beam 1", "Beam 2", "Beam 3"])) 

Then we can start adding columns. Let's add the loads and the lengths first:

1 
2 
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results["l"]=lengths 
results["q"]=loads 
  
display(Latex( 
    "\\begin{table}[H]\n\centering\n"\ 
    +results.to_latex(bold_rows=True, column_format='lll')\ 
    +"\caption{My Table}\n \end{table}")) 



\begin{table}[H] 
\centering 
\begin{tabular}{lll} 
\toprule 
{} &    l &   q \\ 
\midrule 
\textbf{Beam 1} &  5.0 &  20 \\ 
\textbf{Beam 2} &  6.0 &  18 \\ 
\textbf{Beam 3} &  6.5 &  13 \\ 
\bottomrule 
\end{tabular} 
\caption{My Table} 
 \end{table} 

Now we can use the existing columns to perform calculations and store the results in new
ones. If you have used a spreadsheet before you should be familiar with this type of workflow,
and will find that pandas dataframes behave very similarly to Excel tables. Let's finish this
example by calculating the maximum moments and deflections:

1 
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results["$M_{max}$"]=(results.q*results.l**2)/8 
results["$w_{max}$"]=(5/384)*(results.q*results.l**4)/(E*Iy*0.001**3) 
  
display(Latex( 
    "\\begin{table}[H]\n\centering\n"\ 
    +results.to_latex(bold_rows=True, column_format='lllll', escape=False)\ 
    +"\caption{My Table}\n \end{table}")) 

\begin{table}[H] 
\centering 
\begin{tabular}{lllll} 
\toprule 
{} &    l &   q &  $M_{max}$ &  $w_{max}$ \\ 
\midrule 
\textbf{Beam 1} &  5.0 &  20 &   62.50000 &   0.029358 \\ 
\textbf{Beam 2} &  6.0 &  18 &   81.00000 &   0.054789 \\ 
\textbf{Beam 3} &  6.5 &  13 &   68.65625 &   0.054502 \\ 
\bottomrule 
\end{tabular} 
\caption{My Table} 
\end{table} 

There are a few things to note here. First, the headers of the new columns that have been
created contain latex syntax. It will look ugly in jupyter, but once the notebook has been
exported in latex format the table will be rendered correctly. Also, there is a new argument
passed to to_latex() which is escape, set to False. This prevents pandas from escaping
special latex characters in column names.



Exporting the notebook

Now we come to the final step of this chapter, which is exporting the notebook that we have
just created. The tool that we will use is called nbconvert. It is a command line interface that
comes pre-installed with jupyter and can be accessed with anaconda prompt. Maybe you have
never used a command line interface, so let's first explain what it is and what you can do with
it.

Using a command line interface

A command line interface is just a different way of accessing files in running programs. Open
anaconda prompt, type ls and hit enter. You should now see a list of all the files and folders
contained in the path specified in the command line. To enter one of the folders, simply type
cd followed by the folder's name. If you type cd .. you will enter the parent folder. Using cd}
you can go anywhere in your computer, but sometimes it is faster to navigate to a folder
directly. In order to do this simply type cd followed by the absolute path of the folder you
want to access. Remember to use forward slashes, and to enclose folder names that have
spaces in them using quotation marks.

Using nbconvert

Now let's move on to using nbconvert to export the notebook into a .tex file. Using anaconda
prompt, navigate to the folder where the notebook is saved. Once there, type
jupyter nbconvert --to latex --template article notebook\_name.ipynb

where notebook_name is the name of the notebook you want to convert. Press enter, and you
should now see that there is a new file in the folder called notebook_name.tex. If you open it
and run it using your trusted LaTeX editor, you will most likely get an error. This is because
the notebook that we have created in this chapter contains latex code that requires additional
packages, such as float in order to display the tables correctly. We will solve this problem
later: first let's explain the command that we have typed to obtain this result.
Think of jupyter nbconvert as a function call to which you can pass various parameters. --to
specifies the format of the output. By default this is set to html. --template specifies the
template that nbconvert will use while performing the conversion. A template is basically a set
of rules that the converter has to follow. In this case we set it to article, which produces a
decent enough latex document, but the images don't display correctly and all the code is
visible. The solution is to use a custom template that recognizes when the code is hidden and
renders the images better.

Improving the output

Teaching how to write a custom template is beyond the scope of this book, so we will use one
that has already been created. Go to https://python4civil.weebly.com/exporting-in-latex.html

https://python4civil.weebly.com/exporting-in-latex.html


and download temp.tplx, and place it in the same folder of your jupyter notebook. Hide every
code input in the notebook, and save it. Then in anaconda prompt run
jupyter nbconvert --to latex --template temp.tplx notebook\_name.ipynb

This will update the existing latex file already present in the folder. Now open it with your
favourite LaTeX editor and run it: the result should be a nicely typesetted document without
any python code showing, and with nice images and tables.



Conclusions

Most engineers know how to use LaTeX to create professional documents. Being able to
perform calculations on a jupyter notebook and then to export everything in a .tex file can save
a lot of time, and automate something that normally would take hours. I invite you to try to
customize the template file that was used to export the notebook so that it better suits your
needs.



Wrapping up
You have finally reached the end of this book. You should now have a solid understanding of
the python programming language, and how to use it effectively. If this was the first time you
approached programming, congratulations, the hardest part of the learning process is now
behind you. If instead you were already a seasoned programmer, hopefully you still found
some valuable knowledge in here. In any case, you now have the tools necessary to solve a
large variety of problems. Remember that the more you code the easier it gets, so don't stop
here!
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